Rene Jackstadt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11904061/publications.pdf

Version: 2024-02-01

24 papers

2,777 citations

471371 17 h-index 23 g-index

24 all docs 24 docs citations 24 times ranked 4900 citing authors

#	Article	IF	CITATIONS
1	MNK Inhibition Sensitizes <i>KRAS</i> -Mutant Colorectal Cancer to mTORC1 Inhibition by Reducing elF4E Phosphorylation and c-MYC Expression. Cancer Discovery, 2021, 11, 1228-1247.	7.7	45
2	Stromal WNTer Keeps the Tumor Cold and Drives Metastasis. Developmental Cell, 2021, 56, 3-4.	3.1	2
3	Genome-Wide Analysis of c-MYC-Regulated mRNAs and miRNAs and c-MYC DNA-Binding by Next-Generation Sequencing. Methods in Molecular Biology, 2021, 2318, 119-160.	0.4	O
4	Advances in colon cancer research: in vitro and animal models. Current Opinion in Genetics and Development, 2021, 66, 50-56.	1.5	37
5	The amino acid transporter SLC7A5 is required for efficient growth of KRAS-mutant colorectal cancer. Nature Genetics, 2021, 53, 16-26.	9.4	114
6	WNT and Î ² -Catenin in Cancer: Genes and Therapy. Annual Review of Cancer Biology, 2020, 4, 177-196.	2.3	39
7	A MYC–GCN2–elF2α negative feedback loop limits protein synthesis to prevent MYC-dependent apoptosis in colorectal cancer. Nature Cell Biology, 2019, 21, 1413-1424.	4.6	65
8	Epithelial NOTCH Signaling Rewires the Tumor Microenvironment of Colorectal Cancer to Drive Poor-Prognosis Subtypes and Metastasis. Cancer Cell, 2019, 36, 319-336.e7.	7.7	278
9	Loss of BCL9/9l suppresses Wnt driven tumourigenesis in models that recapitulate human cancer. Nature Communications, 2019, 10, 723.	5.8	64
10	Ap4 is rate limiting for intestinal tumor formation by controlling the homeostasis of intestinal stem cells. Nature Communications, 2018, 9, 3573.	5.8	18
11	Mouse models of intestinal cancer. Journal of Pathology, 2016, 238, 141-151.	2.1	109
12	MicroRNAs as regulators and mediators of c-MYC function. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 544-553.	0.9	100
13	p53-Induced miR-15a/16-1 and AP4 Form a Double-Negative Feedback Loop to Regulate Epithelial–Mesenchymal Transition and Metastasis in Colorectal Cancer. Cancer Research, 2014, 74, 532-542.	0.4	117
14	IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. Journal of Clinical Investigation, 2014, 124, 1853-1867.	3.9	613
15	AP4 is required for mitogen- and c-MYC-induced cell cycle progression. Oncotarget, 2014, 5, 7316-7327.	0.8	17
16	Genome-Wide Analysis of c-MYC-Regulated mRNAs and miRNAs, and c-MYC DNA Binding by Next-Generation Sequencing. Methods in Molecular Biology, 2013, 1012, 145-185.	0.4	6
17	SNAIL and miR-34a feed-forward regulation of ZNF281/ZBP99 promotes epithelial-mesenchymal transition. EMBO Journal, 2013, 32, 3079-3095.	3.5	149
18	Detection of <i>miR-34a</i> Promoter Methylation in Combination with Elevated Expression of c-Met and β-Catenin Predicts Distant Metastasis of Colon Cancer. Clinical Cancer Research, 2013, 19, 710-720.	3.2	138

#	Article	IF	CITATION
19	AP4 is a mediator of epithelial–mesenchymal transition and metastasis in colorectal cancer. Journal of Experimental Medicine, 2013, 210, 1331-1350.	4.2	136
20	Repression of c-Kit by p53 is mediated by miR-34 and is associated with reduced chemoresistance, migration and stemness. Oncotarget, 2013, 4, 1399-1415.	0.8	133
21	AP4 is a mediator of epithelial–mesenchymal transition and metastasis in colorectal cancer. Journal of Cell Biology, 2013, 201, 2017OIA33.	2.3	1
22	Microsatellite Instability, KRAS Mutations and Cellular Distribution of TRAIL-Receptors in Early Stage Colorectal Cancer. PLoS ONE, 2012, 7, e51654.	1.1	13
23	miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle, 2011, 10, 4256-4271.	1.3	539
24	Expression, Cellular Distribution, and Prognostic Relevance of TRAIL Receptors in Hepatocellular Carcinoma. Clinical Cancer Research, 2010, 16, 5529-5538.	3.2	44