
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11903007/publications.pdf Version: 2024-02-01



Ζενιι Ηοριτά

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Principle of equal-channel angular pressing for the processing of ultra-fine grained materials.<br>Scripta Materialia, 1996, 35, 143-146.                                                                                                            | 2.6 | 1,683     |
| 2  | Producing bulk ultrafine-grained materials by severe plastic deformation. Jom, 2006, 58, 33-39.                                                                                                                                                      | 0.9 | 1,350     |
| 3  | The process of grain refinement in equal-channel angular pressing. Acta Materialia, 1998, 46, 3317-3331.                                                                                                                                             | 3.8 | 1,166     |
| 4  | The shearing characteristics associated with equal-channel angular pressing. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 1998, 257, 328-332.                                              | 2.6 | 885       |
| 5  | Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic<br>deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure<br>and Processing, 2001, 300, 142-147.             | 2.6 | 606       |
| 6  | A review on high-pressure torsion (HPT) from 1935 to 1988. Materials Science & Engineering A:<br>Structural Materials: Properties, Microstructure and Processing, 2016, 652, 325-352.                                                                | 2.6 | 444       |
| 7  | Equal-channel angular pressing of commercial aluminum alloys: Grain refinement, thermal stability<br>and tensile properties. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials<br>Science, 2000, 31, 691-701.            | 1.1 | 408       |
| 8  | Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing.<br>Acta Materialia, 1998, 46, 1589-1599.                                                                                                        | 3.8 | 398       |
| 9  | Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation: Ten Years Later. Jom, 2016, 68, 1216-1226.                                                                                                                                 | 0.9 | 346       |
| 10 | The evolution of homogeneity in processing by high-pressure torsion. Acta Materialia, 2007, 55, 203-212.                                                                                                                                             | 3.8 | 337       |
| 11 | Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2005, 393, 344-351.                          | 2.6 | 325       |
| 12 | An investigation of grain boundaries in submicrometer-grained Al-Mg solid solution alloys using high-resolution electron microscopy. Journal of Materials Research, 1996, 11, 1880-1890.                                                             | 1.2 | 317       |
| 13 | Factors influencing the equilibrium grain size in equal-channel angular pressing: Role of Mg<br>additions to aluminum. Metallurgical and Materials Transactions A: Physical Metallurgy and<br>Materials Science, 1998, 29, 2503-2510.                | 1.1 | 270       |
| 14 | Microstructural characteristics of ultrafine-grained aluminum produced using equal-channel<br>angular pressing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials<br>Science, 1998, 29, 2245-2252.                       | 1.1 | 257       |
| 15 | Influence of stacking-fault energy on microstructural characteristics of ultrafine-grain copper and copper–zinc alloys. Acta Materialia, 2008, 56, 809-820.                                                                                          | 3.8 | 251       |
| 16 | High-pressure torsion of pure magnesium: Evolution of mechanical properties, microstructures and hydrogen storage capacity with equivalent strain. Scripta Materialia, 2011, 64, 880-883.                                                            | 2.6 | 239       |
| 17 | Development of a multi-pass facility for equal-channel angular pressing to high total strains.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2000, 281, 82-87.                           | 2.6 | 234       |
| 18 | The evolution of homogeneity and grain refinement during equal-channel angular pressing: A model for grain refinement in ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 398, 66-76. | 2.6 | 232       |

| #  | Article                                                                                                                                                                                                                                             | lF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Factors influencing the shearing patterns in equal-channel angular pressing. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 332, 97-109.                                              | 2.6 | 226       |
| 20 | The potential for scaling ECAP: effect of sample size on grain refinement and mechanical properties.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2001, 318, 34-41.                    | 2.6 | 222       |
| 21 | Optimizing the rotation conditions for grain refinement in equal-channel angular pressing.<br>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29,<br>2011-2013.                                        | 1.1 | 221       |
| 22 | Using ECAP to achieve grain refinement, precipitate fragmentation and high strain rate superplasticity in a spray-cast aluminum alloy. Acta Materialia, 2003, 51, 6139-6149.                                                                        | 3.8 | 219       |
| 23 | Microstructural evolution in pure aluminum processed by high-pressure torsion. Materials Science<br>& Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 503, 32-36.                                             | 2.6 | 218       |
| 24 | Nanomaterials by severe plastic deformation: review of historical developments and recent advances.<br>Materials Research Letters, 2022, 10, 163-256.                                                                                               | 4.1 | 215       |
| 25 | High-pressure torsion of pure metals: Influence of atomic bond parameters and stacking fault energy on grain size and correlation with hardness. Acta Materialia, 2011, 59, 6831-6836.                                                              | 3.8 | 212       |
| 26 | Microstructural evolution in high purity aluminum processed by ECAP. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 524, 143-150.                                                     | 2.6 | 209       |
| 27 | Microstructure and mechanical properties of pure Cu processed by high-pressure torsion. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008,<br>497, 168-173.                               | 2.6 | 202       |
| 28 | Influence of pressing temperature on microstructural development in equal-channel angular<br>pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2000, 287, 100-106.                   | 2.6 | 200       |
| 29 | An investigation of ductility and microstructural evolution in an Alâ^'3% Mg alloy with submicron grain size. Journal of Materials Research, 1993, 8, 2810-2818.                                                                                    | 1.2 | 199       |
| 30 | Using equal-channel angular pressing for refining grain size. Jom, 2000, 52, 30-33.                                                                                                                                                                 | 0.9 | 199       |
| 31 | Thermal stability of ultrafine-grained aluminum in the presence of Mg and Zr additions. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999,<br>265, 188-196.                               | 2.6 | 183       |
| 32 | Microstructures and microhardness of an aluminum alloy and pure copper after processing by<br>high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2005, 410-411, 422-425. | 2.6 | 173       |
| 33 | Influence of dislocation–solute atom interactions and stacking fault energy on grain size of<br>single-phase alloys after severe plastic deformation using high-pressure torsion. Acta Materialia, 2014,<br>69, 68-77.                              | 3.8 | 173       |
| 34 | Influence of stacking fault energy on microstructural development in equal-channel angular<br>pressing. Journal of Materials Research, 1999, 14, 4044-4050.                                                                                         | 1.2 | 172       |
| 35 | Developing grain refinement and superplasticity in a magnesium alloy processed by high-pressure<br>torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2008, 488, 117-124.              | 2.6 | 170       |
| 36 | The evolution of homogeneity in an aluminum alloy processed using high-pressure torsion. Acta<br>Materialia, 2008, 56, 5168-5176.                                                                                                                   | 3.8 | 167       |

| #  | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Production of aluminum-matrix carbon nanotube composite using high pressure torsion. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008,<br>490, 300-304.                                             | 2.6 | 164       |
| 38 | Developing high-pressure torsion for use with bulk samples. Materials Science & Engineering A:<br>Structural Materials: Properties, Microstructure and Processing, 2005, 406, 268-273.                                                                         | 2.6 | 163       |
| 39 | Influence of ECAP on precipitate distributions in a spray-cast aluminum alloy. Acta Materialia, 2005, 53, 749-758.                                                                                                                                             | 3.8 | 162       |
| 40 | Significance of homologous temperature in softening behavior and grain size of pure metals<br>processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials:<br>Properties, Microstructure and Processing, 2011, 528, 7514-7523. | 2.6 | 160       |
| 41 | High-pressure torsion for enhanced atomic diffusion and promoting solid-state reactions in the aluminum–copper system. Acta Materialia, 2013, 61, 3482-3489.                                                                                                   | 3.8 | 159       |
| 42 | Design and synthesis of a magnesium alloy for room temperature hydrogen storage. Acta Materialia,<br>2018, 149, 88-96.                                                                                                                                         | 3.8 | 157       |
| 43 | Structural evolution and the Hall-Petch relationship in an Alî—,Mgî—,Liî—,Zr alloy with ultra-fine grain size.<br>Acta Materialia, 1997, 45, 4751-4757.                                                                                                        | 3.8 | 153       |
| 44 | The use of severe plastic deformation for microstructural control. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 324, 82-89.                                                                    | 2.6 | 153       |
| 45 | Observations of grain boundary structure in submicrometer-grained Cu and Ni using high-resolution electron microscopy. Journal of Materials Research, 1998, 13, 446-450.                                                                                       | 1.2 | 150       |
| 46 | Processing Pure Ti by High-Pressure Torsion in Wide Ranges of Pressures and Strain. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 2079-2086.                                                                | 1.1 | 149       |
| 47 | High-pressure torsion using ring specimens. Scripta Materialia, 2008, 58, 469-472.                                                                                                                                                                             | 2.6 | 145       |
| 48 | Influence of pressing speed on microstructural development in equal-channel angular pressing.<br>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30,<br>1989-1997.                                                | 1.1 | 144       |
| 49 | Microstructural characteristics and superplastic ductility in a Zn-22% Al alloy with submicrometer grain size. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1998, 241, 122-128.                         | 2.6 | 140       |
| 50 | A two-step processing route for achieving a superplastic forming capability in dilute magnesium alloys. Scripta Materialia, 2002, 47, 255-260.                                                                                                                 | 2.6 | 133       |
| 51 | Optimizing the procedure of equal-channel angular pressing for maximum superplasticity. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001,<br>297, 111-118.                                          | 2.6 | 132       |
| 52 | Grain refinement of pure nickel using equal-channel angular pressing. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 325, 54-58.                                                                 | 2.6 | 130       |
| 53 | A new constitutive relationship for the homogeneous deformation of metals over a wide range of strain. Acta Materialia, 2004, 52, 3555-3563.                                                                                                                   | 3.8 | 129       |
| 54 | Exceptional superplasticity in an AZ61 magnesium alloy processed by extrusion and ECAP. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006,<br>420, 240-244.                                          | 2.6 | 128       |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | High strain rate superplasticity in an Al-Mg alloy containing scandium. Scripta Materialia, 1998, 38,<br>1851-1856.                                                                                                              | 2.6 | 123       |
| 56 | Fabrication of bulk ultrafine-grained materials through intense plastic straining. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29, 2237-2243.                                   | 1.1 | 123       |
| 57 | High-pressure torsion of TiFe intermetallics for activation of hydrogen storage at room temperature with heterogeneous nanostructure. International Journal of Hydrogen Energy, 2013, 38, 4622-4627.                             | 3.8 | 122       |
| 58 | Influence of stacking fault energy on the minimum grain size achieved in severe plastic deformation.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2007, 463, 22-26. | 2.6 | 119       |
| 59 | Influence of rolling on the superplastic behavior of an Al-Mg-Sc alloy after ECAP. Scripta Materialia,<br>2001, 44, 759-764.                                                                                                     | 2.6 | 118       |
| 60 | Effect of hydrogen on martensite formation in austenitic stainless steels in high-pressure torsion.<br>Acta Materialia, 2009, 57, 2993-3002.                                                                                     | 3.8 | 117       |
| 61 | Evolution of Mechanical Properties and Microstructures with Equivalent Strain in Pure Fe Processed by High Pressure Torsion. Materials Transactions, 2009, 50, 44-50.                                                            | 0.4 | 113       |
| 62 | Microstructural and Mechanical Characteristics of AZ61 Magnesium Alloy Processed by High-Pressure<br>Torsion. Materials Transactions, 2008, 49, 76-83.                                                                           | 0.4 | 112       |
| 63 | Significance of temperature increase in processing by high-pressure torsion. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7301-7305.                        | 2.6 | 108       |
| 64 | The significance of slippage in processing by high-pressure torsion. Scripta Materialia, 2009, 60, 9-12.                                                                                                                         | 2.6 | 107       |
| 65 | Significance of adiabatic heating in equal-channel angular pressing. Scripta Materialia, 1999, 41, 791-796.                                                                                                                      | 2.6 | 104       |
| 66 | The application of equal-channel angular pressing to an aluminum single crystal. Acta Materialia,<br>2004, 52, 1387-1395.                                                                                                        | 3.8 | 103       |
| 67 | Developing superplastic properties in an aluminum alloy through severe plastic deformation.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 1999, 272, 63-72.          | 2.6 | 101       |
| 68 | High-pressure zinc oxide phase as visible-light-active photocatalyst with narrow band gap. Journal of<br>Materials Chemistry A, 2017, 5, 20298-20303.                                                                            | 5.2 | 101       |
| 69 | Room-Temperature Superplasticity in an Ultrafine-Grained Magnesium Alloy. Scientific Reports, 2017, 7, 2662.                                                                                                                     | 1.6 | 100       |
| 70 | Hydrogen storage capability of MgNi2 processed by high pressure torsion. Scripta Materialia, 2007, 57,<br>751-753.                                                                                                               | 2.6 | 99        |
| 71 | Plastic deformation and allotropic phase transformations in zirconia ceramics during high-pressure torsion. Scripta Materialia, 2011, 65, 974-977.                                                                               | 2.6 | 95        |
| 72 | Ultrahigh strength and high plasticity in TiAl intermetallics with bimodal grain structure and nanotwins. Scripta Materialia, 2012, 67, 814-817.                                                                                 | 2.6 | 94        |

| #  | Article                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Plastic flow, structure and mechanical properties in pure Al deformed by twist extrusion. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009,<br>519, 105-111.                                                     | 2.6 | 90        |
| 74 | Development of High-Pressure Sliding Process for Microstructural Refinement of Rectangular<br>Metallic Sheets. Materials Transactions, 2009, 50, 930-933.                                                                                                                   | 0.4 | 90        |
| 75 | Continuous high-pressure torsion. Journal of Materials Science, 2010, 45, 4578-4582.                                                                                                                                                                                        | 1.7 | 90        |
| 76 | Enhanced grain growth in an Al-Mg alloy with ultrafine grain size. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 216, 41-46.                                                                                 | 2.6 | 88        |
| 77 | Ultrafine-grained magnesium–lithium alloy processed by high-pressure torsion: Low-temperature<br>superplasticity and potential for hydroforming. Materials Science & Engineering A: Structural<br>Materials: Properties, Microstructure and Processing, 2015, 640, 443-448. | 2.6 | 87        |
| 78 | Universal Plot for Hardness Variation in Pure Metals Processed by High-Pressure Torsion. Materials Transactions, 2010, 51, 1051-1054.                                                                                                                                       | 0.4 | 86        |
| 79 | Grain refinement and superplastic flow in an aluminum alloy processed by high-pressure torsion.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2005, 408, 141-146.                                               | 2.6 | 84        |
| 80 | Equal-channel angular pressing: A novel tool for microstructural control. Metals and Materials<br>International, 1998, 4, 1181-1190.                                                                                                                                        | 0.2 | 83        |
| 81 | Mechanism of activation of TiFe intermetallics for hydrogen storage by severe plastic deformation using high-pressure torsion. Applied Physics Letters, 2013, 103, .                                                                                                        | 1.5 | 83        |
| 82 | Significance of Microstructural Control for Superplastic Deformation and Forming. Materials Transactions, JIM, 1996, 37, 336-339.                                                                                                                                           | 0.9 | 82        |
| 83 | Achieving exceptional superplasticity in a bulk aluminum alloy processed by high-pressure torsion.<br>Scripta Materialia, 2008, 58, 1029-1032.                                                                                                                              | 2.6 | 82        |
| 84 | Equal-channel angular pressing using plate samples. Materials Science & Engineering A: Structural<br>Materials: Properties, Microstructure and Processing, 2003, 361, 258-266.                                                                                              | 2.6 | 81        |
| 85 | Microstructural development in equal-channel angular pressing using a 60° die. Acta Materialia, 2004, 52, 2497-2507.                                                                                                                                                        | 3.8 | 81        |
| 86 | Using grain boundary engineering to evaluate the diffusion characteristics in ultrafine-grained<br>Al–Mg and Al–Zn alloys. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2004, 371, 241-250.                       | 2.6 | 79        |
| 87 | Formation of FeNi with <i>L</i> 1 <sub>0</sub> -ordered structure using high-pressure torsion.<br>Philosophical Magazine Letters, 2014, 94, 639-646.                                                                                                                        | 0.5 | 79        |
| 88 | Factors influencing the flow and hardness of materials with ultrafine grain sizes. Philosophical<br>Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1998, 78,<br>203-216.                                                            | 0.7 | 78        |
| 89 | High-pressure torsion of titanium at cryogenic and room temperatures: Grain size effect on allotropic phase transformations. Acta Materialia, 2014, 68, 207-213.                                                                                                            | 3.8 | 78        |
| 90 | Equal-Channel Angular Pressing and High-Pressure Torsion of Pure Copper: Evolution of Electrical Conductivity and Hardness with Strain. Materials Transactions, 2012, 53, 123-127.                                                                                          | 0.4 | 77        |

| #   | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Application of high-pressure torsion for consolidation of ceramic powders. Scripta Materialia, 2010, 63, 174-177.                                                                                                                                   | 2.6 | 76        |
| 92  | High-pressure torsion of aluminum with ultrahigh purity (99.9999%) and occurrence of inverse<br>Hall-Petch relationship. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2017, 679, 428-434. | 2.6 | 75        |
| 93  | An Evaluation of Superplasticity in Aluminum-Scandium Alloys Processed by Equal-Channel Angular<br>Pressing. Materials Transactions, JIM, 1999, 40, 772-778.                                                                                        | 0.9 | 74        |
| 94  | Effect of temperature rise on microstructural evolution during high-pressure torsion. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018,<br>714, 167-171.                                 | 2.6 | 74        |
| 95  | Characteristics of diffusion in Al-Mg alloys with ultrafine grain sizes. Philosophical Magazine A:<br>Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2002, 82, 2249-2262.                                               | 0.7 | 73        |
| 96  | Softening of high purity aluminum and copper processed by high pressure torsion. International<br>Journal of Materials Research, 2009, 100, 1668-1673.                                                                                              | 0.1 | 73        |
| 97  | Formation of metastable phases in magnesium–titanium system by high-pressure torsion and their<br>hydrogen storage performance. Acta Materialia, 2015, 99, 150-156.                                                                                 | 3.8 | 73        |
| 98  | Visible-Light-Driven Photocatalytic Hydrogen Generation on Nanosized TiO <sub>2</sub> -II Stabilized by<br>High-Pressure Torsion. ACS Catalysis, 2016, 6, 5103-5107.                                                                                | 5.5 | 73        |
| 99  | New nanostructured phases with reversible hydrogen storage capability in immiscible<br>magnesium–zirconium system produced by high-pressure torsion. Acta Materialia, 2016, 108, 293-303.                                                           | 3.8 | 72        |
| 100 | Age hardening and thermal stability of Al–Cu alloy processed by high-pressure torsion. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015,<br>627, 111-118.                                | 2.6 | 70        |
| 101 | Transition from poor ductility to room-temperature superplasticity in a nanostructured aluminum alloy. Scientific Reports, 2018, 8, 6740.                                                                                                           | 1.6 | 70        |
| 102 | High-pressure torsion of pure cobalt: hcp-fcc phase transformations and twinning during severe plastic deformation. Applied Physics Letters, 2013, 102, .                                                                                           | 1.5 | 69        |
| 103 | Microstructural Evolution in Pure Aluminum in the Early Stages of Processing by High-Pressure<br>Torsion. Materials Transactions, 2010, 51, 2-7.                                                                                                    | 0.4 | 67        |
| 104 | Grain boundary structure in Al–Mg and Al–Mg–Sc alloys after equal-channel angular pressing.<br>Journal of Materials Research, 2001, 16, 583-589.                                                                                                    | 1.2 | 66        |
| 105 | Severe plastic deformation as a processing tool for developing superplastic metals. Journal of Alloys and Compounds, 2004, 378, 27-34.                                                                                                              | 2.8 | 66        |
| 106 | Using ring samples to evaluate the processing characteristics in high-pressure torsion. Acta<br>Materialia, 2009, 57, 1147-1153.                                                                                                                    | 3.8 | 66        |
| 107 | Evaluating the influence of pressure and torsional strain on processing by high-pressure torsion.<br>Journal of Materials Science, 2008, 43, 7286-7292.                                                                                             | 1.7 | 65        |
| 108 | Strong and ductile nanostructured Cu-carbon nanotube composite. Applied Physics Letters, 2009, 95, 071907.                                                                                                                                          | 1.5 | 65        |

| #   | Article                                                                                                                                                                                                                                                                       | IF                    | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|
| 109 | Phase transformation and nanograin refinement of silicon by processing through high-pressure torsion. Applied Physics Letters, 2012, 101, .                                                                                                                                   | 1.5                   | 65        |
| 110 | Photocatalytic hydrogen generation on low-bandgap black zirconia (ZrO <sub>2</sub> ) produced by high-pressure torsion. Journal of Materials Chemistry A, 2020, 8, 3643-3650.                                                                                                 | 5.2                   | 65        |
| 111 | Plastic Deformation of BaTiO <sub>3</sub> Ceramics by High-pressure Torsion and Changes in Phase<br>Transformations, Optical and Dielectric Properties. Materials Research Letters, 2015, 3, 216-221.                                                                         | 4.1                   | 64        |
| 112 | Grain refinement and superplasticity in a magnesium alloy processed by equal-channel angular<br>pressing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005,<br>36, 1705-1711.                                                      | 1.1                   | 62        |
| 113 | Cold Consolidation of Ball-Milled Titanium Powders Using High-Pressure Torsion. Metallurgical and<br>Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 3308-3317.                                                                                | 1.1                   | 62        |
| 114 | Grain refinement and high strain rate superplasticity in alumunium 2024 alloy processed by<br>high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2015, 622, 139-145.                               | 2.6                   | 62        |
| 115 | Ultra-severe plastic deformation: Evolution of microstructure, phase transformation and hardness<br>in immiscible magnesium-based systems. Materials Science & Engineering A: Structural Materials:<br>Properties, Microstructure and Processing, 2017, 701, 158-166.         | 2.6                   | 62        |
| 116 | Microstructural evolution in an aluminum solid solution alloy processed by ECAP. Materials Science<br>& Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528,<br>6059-6065.                                                              | 2.6                   | 61        |
| 117 | Achieving superplasticity in ultrafine-grained copper: influence of Zn and Zr additions. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003,<br>352, 129-135.                                                        | 2.6                   | 59        |
| 118 | Scaling-Up of High Pressure Torsion Using Ring Shape. Materials Transactions, 2009, 50, 92-95.                                                                                                                                                                                | 0.4                   | 59        |
| 119 | Correlations between hardness and atomic bond parameters of pure metals and semi-metals after processing by high-pressure torsion. Scripta Materialia, 2011, 64, 161-164.                                                                                                     | 2.6                   | 58        |
| 120 | Powder consolidation of Al–10 wt% Fe alloy by High-Pressure Torsion. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 558, 462-471.                                                                               | 2.6                   | 58        |
| 121 | Influence of crystal orientation on ECAP of aluminum single crystals. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 420, 79-86.                                                                                | 2.6                   | 57        |
| 122 | Using X-ray microdiffraction to determine grain sizes at selected positions in disks processed by<br>high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2007, 444, 153-156.                        | 2.6                   | 57        |
| 123 | High-pressure torsion for new hydrogen storage materials. Science and Technology of Advanced Materials, 2018, 19, 185-193.                                                                                                                                                    | 2.8                   | 57        |
| 124 | Achieving superplasticity in a Cu–40%Zn alloy through severe plastic deformation. Scripta Materialia,<br>2001, 45, 965-970.                                                                                                                                                   | 2.6                   | 56        |
| 125 | High-Pressure Torsion of Machining Chips and Bulk Discs of Amorphous<br>Zr <sub>50</sub> Cu <sub>30</sub> Al <sub>10</sub> Ni <sub>10Materials Transactions, 2010, 51, 23-26.</sub>                                                                                           | 18 <b>&amp;.g</b> t;. | 56        |
| 126 | Softening by severe plastic deformation and hardening by annealing of aluminum–zinc alloy:<br>Significance of elemental and spinodal decompositions. Materials Science & Engineering A:<br>Structural Materials: Properties, Microstructure and Processing, 2014, 610, 17-27. | 2.6                   | 56        |

| #   | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Achieving enhanced ductility in a dilute magnesium alloy through severe plastic deformation.<br>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35,<br>1735-1744.                                                    | 1.1 | 55        |
| 128 | Microstructures and Mechanical Properties of Pure V and Mo Processed by High-Pressure Torsion.<br>Materials Transactions, 2010, 51, 1072-1079.                                                                                                                    | 0.4 | 55        |
| 129 | Effect of high-pressure torsion on hydrogen trapping in Fe–0.01 mass% C and type 310S austenitic<br>stainless steel. Acta Materialia, 2010, 58, 649-657.                                                                                                          | 3.8 | 55        |
| 130 | An evaluation of the flow behavior during high strain rate superplasticity in an Alâ~'Mgâ~'Sc alloy.<br>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32,<br>707-716.                                              | 1.1 | 54        |
| 131 | Activation of titanium-vanadium alloy for hydrogen storage by introduction of nanograins and edge<br>dislocations using high-pressure torsion. International Journal of Hydrogen Energy, 2016, 41,<br>8917-8924.                                                  | 3.8 | 54        |
| 132 | Structure and mechanical behavior of ultrafine-grained aluminum-iron alloy stabilized by nanoscaled intermetallic particles. Acta Materialia, 2019, 167, 89-102.                                                                                                  | 3.8 | 54        |
| 133 | Development of Severe Torsion Straining Process for Rapid Continuous Grain Refinement. Materials<br>Transactions, 2004, 45, 3338-3342.                                                                                                                            | 0.4 | 53        |
| 134 | Fabrication of submicrometer-grained Zn–22% Al by torsion straining. Journal of Materials Research, 1996, 11, 2128-2130.                                                                                                                                          | 1.2 | 52        |
| 135 | Fabrication and thermal stability of a nanocrystalline Ni–Al–Cr alloy: Comparison with pure Cu and<br>Ni. Journal of Materials Research, 1999, 14, 4200-4207.                                                                                                     | 1.2 | 51        |
| 136 | Influence of scandium on superplastic ductilities in an Al–Mg–Sc alloy. Journal of Materials<br>Research, 2000, 15, 2571-2576.                                                                                                                                    | 1.2 | 51        |
| 137 | Effect of initial grain sizes on hardness variation and strain distribution of pure aluminum severely deformed by compression tests. Acta Materialia, 2008, 56, 6291-6303.                                                                                        | 3.8 | 50        |
| 138 | Strengthening of Cu–Ni–Si alloy using high-pressure torsion and aging. Materials Characterization, 2014, 90, 62-70.                                                                                                                                               | 1.9 | 50        |
| 139 | Microstructure Evolution in Pure Al Processed with Twist Extrusion. Materials Transactions, 2009, 50, 96-100.                                                                                                                                                     | 0.4 | 49        |
| 140 | Long-time stability of metals after severe plastic deformation: Softening and hardening by<br>self-annealing versus thermal stability. Materials Science & Engineering A: Structural Materials:<br>Properties, Microstructure and Processing, 2018, 729, 340-348. | 2.6 | 48        |
| 141 | Severe Plastic Deformation under High Pressure: Upsizing Sample Dimensions. Materials Transactions, 2020, 61, 1177-1190.                                                                                                                                          | 0.4 | 47        |
| 142 | High-Pressure Torsion for Pure Chromium and Niobium. Materials Transactions, 2012, 53, 38-45.                                                                                                                                                                     | 0.4 | 45        |
| 143 | Strengthening of A2024 alloy by high-pressure torsion and subsequent aging. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 704, 112-118.                                                            | 2.6 | 45        |
| 144 | Factors influencing microstructural development in equal-channel angular pressing. Metals and Materials International, 2003, 9, 141-149.                                                                                                                          | 1.8 | 44        |

| #   | Article                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Evolution of Microstructure and Hardness in Pure Al by Twist Extrusion. Materials Transactions, 2008, 49, 2-6.                                                                                                                                                        | 0.4 | 44        |
| 146 | Continuous high-pressure torsion using wires. Journal of Materials Science, 2012, 47, 473-478.                                                                                                                                                                        | 1.7 | 44        |
| 147 | Scaling up of High-Pressure Sliding (HPS) for Grain Refinement and Superplasticity. Metallurgical and<br>Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 4669-4681.                                                                    | 1.1 | 44        |
| 148 | Enhanced photocatalytic hydrogen production on GaN–ZnO oxynitride by introduction of strain-induced nitrogen vacancy complexes. Acta Materialia, 2020, 185, 149-156.                                                                                                  | 3.8 | 44        |
| 149 | Superplastic flow in a nanostructured aluminum alloy produced using high-pressure torsion.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2009, 500, 170-175.                                              | 2.6 | 43        |
| 150 | Methods for Designing Concurrently Strengthened Severely Deformed Age-Hardenable Aluminum<br>Alloys by Ultrafine-Grained and Precipitation Hardenings. Metallurgical and Materials Transactions A:<br>Physical Metallurgy and Materials Science, 2013, 44, 3921-3933. | 1.1 | 43        |
| 151 | High-pressure torsion of iron with various purity levels and validation of Hall-Petch strengthening<br>mechanism. Materials Science & Engineering A: Structural Materials: Properties, Microstructure<br>and Processing, 2019, 743, 597-605.                          | 2.6 | 43        |
| 152 | Mechanical Properties and Microstructures of Al-Fe Alloys Processed by High-Pressure Torsion.<br>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43,<br>5182-5192.                                                       | 1.1 | 42        |
| 153 | Phase transformations, vacancy formation and variations of optical and photocatalytic properties in<br>TiO2-ZnO composites by high-pressure torsion. International Journal of Plasticity, 2020, 124, 170-185.                                                         | 4.1 | 41        |
| 154 | An extrapolation method for the determination of Cliff‣orimer <i>k</i> <sub>AB</sub> factors at zero foil thickness. Journal of Microscopy, 1986, 143, 215-231.                                                                                                       | 0.8 | 38        |
| 155 | Strengthening of AA7075 alloy by processing with high-pressure sliding (HPS) and subsequent aging.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2015, 628, 56-61.                                        | 2.6 | 38        |
| 156 | Using intense plastic straining for high-strain-rate superplasticity. Jom, 1998, 50, 41-45.                                                                                                                                                                           | 0.9 | 37        |
| 157 | The aging characteristics of an Al–Ag alloy processed by equal-channel angular pressing. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006,<br>437, 240-247.                                                | 2.6 | 37        |
| 158 | Texture of bismuth telluride-based thermoelectric semiconductors processed by high-pressure torsion. Journal of Physics and Chemistry of Solids, 2009, 70, 1089-1092.                                                                                                 | 1.9 | 37        |
| 159 | Softening and Microstructural Coarsening without Twin Formation in FCC Metals with Low Stacking<br>Fault Energy after Processing by High-Pressure Torsion. Materials Transactions, 2009, 50, 1633-1637.                                                               | 0.4 | 37        |
| 160 | Dynamic recrystallization and recovery during high-pressure torsion: Experimental evidence by<br>torque measurement using ring specimens. Materials Science & Engineering A: Structural<br>Materials: Properties, Microstructure and Processing, 2013, 559, 506-509.  | 2.6 | 37        |
| 161 | Age hardening and the potential for superplasticity in a fine-grained Al-Mg-Li-Zr alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29, 169-177.                                                                    | 1.1 | 36        |
| 162 | Low-Temperature Superplasticity in Aluminum Alloys Processed by Equal-Channel Angular Pressing.<br>Materials Transactions, 2002, 43, 2364-2369.                                                                                                                       | 0.4 | 36        |

| #   | Article                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Pitting Corrosion Resistance of Ultrafine-Grained Aluminum Processed by Severe Plastic Deformation.<br>Materials Transactions, 2006, 47, 1163-1169.                                                                                                                                    | 0.4 | 36        |
| 164 | Large enhancement of superconducting transition temperature in single-element superconducting rhenium by shear strain. Scientific Reports, 2016, 6, 36337.                                                                                                                             | 1.6 | 35        |
| 165 | Improved Photocatalytic Hydrogen Evolution on Tantalate Perovskites CsTaO <sub>3</sub> and<br>LiTaO <sub>3</sub> by Strain-Induced Vacancies. ACS Applied Energy Materials, 2020, 3, 1710-1718.                                                                                        | 2.5 | 35        |
| 166 | A model investigation of the shearing characteristics in equal-channel angular pressing. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003,<br>347, 223-230.                                                                 | 2.6 | 34        |
| 167 | Real Hydrostatic Pressure in High-Pressure Torsion Measured by Bismuth Phase Transformations and FEM Simulations. Materials Transactions, 2016, 57, 533-538.                                                                                                                           | 0.4 | 34        |
| 168 | Fabrication and Characterization of Supersaturated Al-Mg Alloys by Severe Plastic Deformation and Their Mechanical Properties. Materials Transactions, 2009, 50, 76-81.                                                                                                                | 0.4 | 33        |
| 169 | High-pressure torsion for fabrication of high-strength and high-electrical conductivity Al micro-wires. Journal of Materials Science, 2014, 49, 6550-6557.                                                                                                                             | 1.7 | 33        |
| 170 | High strength and superconductivity in nanostructured niobium–titanium alloy by high-pressure<br>torsion and annealing: Significance of elemental decomposition and supersaturation. Acta Materialia,<br>2014, 80, 149-158.                                                            | 3.8 | 33        |
| 171 | Using Equal-Channel Angular Pressing for the Production of Superplastic Aluminum and Magnesium<br>Alloys. Journal of Materials Engineering and Performance, 2004, 13, 683-690.                                                                                                         | 1.2 | 32        |
| 172 | Processing by equal-channel angular pressing: Applications to grain boundary engineering. Journal of<br>Materials Science, 2005, 40, 909-917.                                                                                                                                          | 1.7 | 32        |
| 173 | Production of Al/Al <sub>2</sub> O <sub>3</sub> Nanocomposites through Consolidation by<br>High-Pressure Torsion. Materials Transactions, 2012, 53, 13-16.                                                                                                                             | 0.4 | 32        |
| 174 | Fabrication of nanograined silicon by high-pressure torsion. Journal of Materials Science, 2014, 49, 6565-6569.                                                                                                                                                                        | 1.7 | 32        |
| 175 | Hydrogen trapping on lattice defects produced by high-pressure torsion in Fe–0.01 mass% C alloy.<br>Scripta Materialia, 2010, 63, 552-555.                                                                                                                                             | 2.6 | 31        |
| 176 | Aging Behavior of Al 6061 Alloy Processed by High-Pressure Torsion and Subsequent Aging.<br>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46,<br>2664-2673.                                                                             | 1.1 | 31        |
| 177 | Incremental Feeding High-Pressure Sliding for Grain Refinement of Large-Scale Sheets: Application to<br>Inconel 718. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science,<br>2018, 49, 1830-1840.                                                    | 1.1 | 31        |
| 178 | Evolution of grain boundary structure in submicrometer-grained Al-Mg alloy. Materials<br>Characterization, 1996, 37, 285-294.                                                                                                                                                          | 1.9 | 30        |
| 179 | Developing superplasticity in a spray-cast aluminum 7034 alloy through equal-channel angular pressing. Materials Letters, 2003, 57, 3588-3592.                                                                                                                                         | 1.3 | 30        |
| 180 | A quantitative study of cavity development in the tensile testing of an aluminum metal matrix<br>composite processed by equal-channel angular pressing. Materials Science & Engineering A:<br>Structural Materials: Properties, Microstructure and Processing, 2005, 410-411, 402-407. | 2.6 | 30        |

| #   | Article                                                                                                                                                                                                                                                 | IF                      | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------|
| 181 | An investigation of the deformation process during equal-channel angular pressing of an aluminum single crystal. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 410-411, 194-200.            | 2.6                     | 30        |
| 182 | Pitting Corrosion Resistance of Anodized Aluminum Alloy Processed by Severe Plastic Deformation.<br>Materials Transactions, 2007, 48, 21-28.                                                                                                            | 0.4                     | 30        |
| 183 | High Strength and High Uniform Ductility in a Severely Deformed Iron Alloy by Lattice Softening and Multimodal-structure Formation. Materials Research Letters, 2015, 3, 197-202.                                                                       | 4.1                     | 30        |
| 184 | Effect of gradient-structure versus uniform nanostructure on hydrogen storage of Ti-V-Cr alloys:<br>Investigation using ultrasonic SMAT and HPT processes. Journal of Alloys and Compounds, 2018, 737,<br>337-346.                                      | 2.8                     | 30        |
| 185 | Analytical electron microscopy study of diffusion-bonded multiphase system. Journal of Materials Science, 1997, 4, 229.                                                                                                                                 | 1.2                     | 29        |
| 186 | Pitting Corrosion Resistance of Anodized Aluminum-Copper Alloy Processed by Severe Plastic Deformation. Materials Transactions, 2008, 49, 2648-2655.                                                                                                    | 0.4                     | 29        |
| 187 | Effect of High-Pressure Torsion Processing and Annealing on Hydrogen Embrittlement of Type 304<br>Metastable Austenitic Stainless Steel. Metallurgical and Materials Transactions A: Physical<br>Metallurgy and Materials Science, 2010, 41, 3110-3120. | 1.1                     | 29        |
| 188 | High Strength and Electrical Conductivity of Alâ€Fe Alloys Produced by Synergistic Combination of Highâ€Pressure Torsion and Aging. Advanced Engineering Materials, 2015, 17, 1792-1803.                                                                | 1.6                     | 29        |
| 189 | Impact of TiO <sub>2</sub> -II phase stabilized in anatase matrix by high-pressure torsion on electrocatalytic hydrogen production. Materials Research Letters, 2019, 7, 334-339.                                                                       | 4.1                     | 29        |
| 190 | a ¨åĝā²āšāįåŠå·¥ā«ã, ã, ‹è¶å¾®ç″çμ,,ç1"å^¶å¾¡. Keikinzoku/Journal of Japan Institute of Light Metals, 2010                                                                                                                                              | , 60, 1 <b>3.4</b> -141 | l. 28     |
| 191 | Strengthening of Al through addition of Fe and by processing with high-pressure torsion. Journal of Materials Science, 2013, 48, 4713-4722.                                                                                                             | 1.7                     | 27        |
| 192 | Nanograin formation of GaAs by high-pressure torsion. Philosophical Magazine Letters, 2014, 94, 1-8.                                                                                                                                                    | 0.5                     | 27        |
| 193 | Superplasticity of Inconel 718 after processing by high-pressure sliding (HPS). Materials Science & amp;<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 682, 603-612.                                         | 2.6                     | 27        |
| 194 | Microstructural details of hydrogen diffusion and storage in Ti–V–Cr alloys activated through<br>surface and bulk severe plastic deformation. International Journal of Hydrogen Energy, 2020, 45,<br>5326-5336.                                         | 3.8                     | 27        |
| 195 | Effects of ball milling and high-pressure torsion for improving mechanical properties of Al–Al2O3 nanocomposites. Journal of Materials Science, 2012, 47, 7821-7827.                                                                                    | 1.7                     | 26        |
| 196 | Graphite to diamond-like carbon phase transformation by high-pressure torsion. Applied Physics Letters, 2013, 103, .                                                                                                                                    | 1.5                     | 26        |
| 197 | Microstructural evolution and mechanical properties of biomedical Co–Cr–Mo alloy subjected to high-pressure torsion. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 59, 226-235.                                                     | 1.5                     | 26        |
| 198 | Severe Plastic Deformation for Nanostructure Controls. Materials Transactions, 2020, 61, 2241-2247.                                                                                                                                                     | 0.4                     | 26        |

| #   | Article                                                                                                                                                                                                                                                  | IF        | CITATIONS         |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------|
| 199 | An evaluation of the flow behavior during high strain rate superplasticity in an Al-Mg-Sc alloy.<br>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32,<br>707-716.                                         | 1.1       | 25                |
| 200 | Using the stress–strain relationships to propose regions of low and high temperature plastic<br>deformation in aluminum. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2005, 410-411, 234-238.  | 2.6       | 25                |
| 201 | Influence of crystal orientation on the processing of copper single crystals by ECAP. Journal of Materials Science, 2007, 42, 1501-1511.                                                                                                                 | 1.7       | 25                |
| 202 | Strengthening via Microstructure Refinement in Bulk Al–4 mass% Fe Alloy Using<br>High-Pressure Torsion. Materials Transactions, 2012, 53, 46-55.                                                                                                         | 0.4       | 25                |
| 203 | Superconducting properties in bulk nanostructured niobium prepared by high-pressure torsion.<br>Physica C: Superconductivity and Its Applications, 2013, 493, 132-135.                                                                                   | 0.6       | 25                |
| 204 | Phase Transformations in MgH <sub>2</sub> –TiH <sub>2</sub> Hydrogen Storage System by<br>Highâ€Pressure Torsion Process. Advanced Engineering Materials, 2020, 22, 1900027.                                                                             | 1.6       | 25                |
| 205 | Microstructural Evolution in an Al-1.7 at%Cu Alloy Deformed by Equal-Channel Angular Pressing.<br>Materials Transactions, JIM, 1999, 40, 938-941.                                                                                                        | 0.9       | 24                |
| 206 | Microstructure control using severe plastic deformation. Science and Technology of Advanced Materials, 2006, 7, 649-654.                                                                                                                                 | 2.8       | 24                |
| 207 | High-pressure torsion for production of magnetoresistance in Cu–Co alloy. Journal of Materials<br>Science, 2008, 43, 7349-7353.                                                                                                                          | 1.7       | 24                |
| 208 | Solid-state reactions and hydrogen storage in magnesium mixed with various elements by<br>high-pressure torsion: experiments and first-principles calculations. RSC Advances, 2016, 6, 11665-11674.                                                      | 1.7       | 24                |
| 209 | Thermal conductivity reduction of crystalline silicon by high-pressure torsion. Nanoscale Research<br>Letters, 2014, 9, 326.                                                                                                                             | 3.1       | 23                |
| 210 | High-resolution transmission electron microscopy analysis of nanograined germanium produced by high-pressure torsion. Materials Characterization, 2017, 132, 132-138.                                                                                    | 1.9       | 23                |
| 211 | Low-temperature anatase-to-rutile phase transformation and unusual grain coarsening in titanium oxide nanopowders by high-pressure torsion straining. Scripta Materialia, 2019, 162, 341-344.                                                            | 2.6       | 23                |
| 212 | Phase Separation and Lattice Misfit in<br>NiAl(β <sub>1</sub> )–Ni <sub>2</sub> AlTi( <i>H</i> )&a<br>System. Materials Transactions, JIM, 1997, 38, 99-106.                                                                                             | mponelash | ;Ni <b>⊉i</b> (&b |
| 213 | Multi-pass high-pressure sliding (MP-HPS) for grain refinement and superplasticity in metallic round<br>rods. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2019, 748, 108-118.                 | 2.6       | 22                |
| 214 | Effect of Hydrogen on Tensile Properties of Ultrafine-Grained Type 310S Austenitic Stainless Steel<br>Processed by High-Pressure Torsion. Metallurgical and Materials Transactions A: Physical Metallurgy<br>and Materials Science, 2011, 42, 1619-1629. | 1.1       | 21                |
| 215 | Hydrogen generation from pure water using Al–Sn powders consolidated through high-pressure<br>torsion. Journal of Materials Research, 2016, 31, 775-782.                                                                                                 | 1.2       | 21                |
| 216 | Allotropic phase transformation and photoluminescence of germanium nanograins processed by high-pressure torsion. Journal of Materials Science, 2016, 51, 138-143.                                                                                       | 1.7       | 21                |

| #   | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Phase transformation of germanium by processing through high-pressure torsion: strain and temperature effects. Philosophical Magazine Letters, 2017, 97, 27-34.                                                                   | 0.5 | 21        |
| 218 | New Mg–V–Cr BCC Alloys Synthesized by High-Pressure Torsion and Ball Milling. Materials<br>Transactions, 2018, 59, 741-746.                                                                                                       | 0.4 | 21        |
| 219 | Microstructural evolution in a spray-cast aluminum alloy during equal-channel angular pressing.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2005, 410-411, 303-307. | 2.6 | 20        |
| 220 | Evolution of lattice defects, disordered/ordered phase transformations and mechanical properties in<br>Ni–Al–Ti intermetallics by high-pressure torsion. Journal of Alloys and Compounds, 2013, 563, 221-228.                     | 2.8 | 20        |
| 221 | High-resolution transmission electron microscopy analysis of bulk nanograined silicon processed by high-pressure torsion. Materials Characterization, 2017, 129, 163-168.                                                         | 1.9 | 19        |
| 222 | Grain growth in nanograined aluminum oxide by high-pressure torsion: Phase transformation and plastic strain effects. Scripta Materialia, 2018, 152, 11-14.                                                                       | 2.6 | 19        |
| 223 | Hydrolytic Hydrogen Production on Al–Sn–Zn Alloys Processed by High-Pressure Torsion. Materials, 2018, 11, 1209.                                                                                                                  | 1.3 | 19        |
| 224 | Photocatalytic activity of aluminum oxide by oxygen vacancy generation using high-pressure torsion straining. Scripta Materialia, 2019, 173, 120-124.                                                                             | 2.6 | 19        |
| 225 | An Evaluation of Superplastic Anisotropy after Processing by Equal-Channel Angular Pressing.<br>Materials Transactions, 2004, 45, 3079-3081.                                                                                      | 0.4 | 18        |
| 226 | Microstructural Evolution and Mechanical Properties of High Purity Aluminium Processed by Equal-Channel Angular Pressing. Materials Transactions, 2008, 49, 15-19.                                                                | 0.4 | 18        |
| 227 | Hydrogen Effects on Ultrafine-Grained Steels Processed by High-Pressure Torsion. Materials<br>Transactions, 2012, 53, 773-785.                                                                                                    | 0.4 | 18        |
| 228 | Age Hardening in Ultrafine-Grained Al-2ÂPctÂFe Alloy Processed by High-Pressure Torsion. Metallurgical<br>and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 2614-2624.                           | 1.1 | 18        |
| 229 | Microstructure and phase transformations of silica glass and vanadium oxide by severe plastic deformation via high-pressure torsion straining. Journal of Alloys and Compounds, 2019, 779, 394-398.                               | 2.8 | 18        |
| 230 | Application of High-Pressure Torsion to WC–Co Ceramic-Based Composites for<br>Improvement of Consolidation, Microstructure and Hardness. Materials Transactions, 2013, 54,<br>1540-1548.                                          | 0.4 | 17        |
| 231 | Effect of temperature on solid-state formation of bulk nanograined intermetallic Al <sub>3</sub> Ni<br>during high-pressure torsion. Philosophical Magazine, 2014, 94, 876-887.                                                   | 0.7 | 17        |
| 232 | Hydrostatic Compression Effects on Fifth-Group Element Superconductors V, Nb, and Ta Subjected to<br>High-Pressure Torsion. Materials Transactions, 2019, 60, 1472-1483.                                                          | 0.4 | 17        |
| 233 | Thermoelectric Properties of Bi <sub>2</sub> Te <sub>3</sub> -Related Materials<br>Finely Grained by Mechanical Alloying and High Pressure Torsion. Materials Transactions, 2009, 50,<br>1592-1595.                               | 0.4 | 16        |
| 234 | Severe plastic deformation in Gum Metal with composition at the structural stability limit.<br>International Journal of Materials Research, 2009, 100, 1217-1221.                                                                 | 0.1 | 16        |

| #   | ARTICLE                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Application of equal-channel angular pressing to Cu–Co alloy with ferromagnetic precipitates.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2006, 417, 149-157. | 2.6 | 15        |
| 236 | Effect of Annealing on the Pitting Corrosion Resistance of Anodized Aluminum-Magnesium Alloy<br>Processed by Severe Plastic Deformation. Materials Transactions, 2008, 49, 2656-2663.                                       | 0.4 | 15        |
| 237 | Effect of Equal-Channel Angular Pressing on Pitting Corrosion of Pure Aluminum. International<br>Journal of Corrosion, 2012, 2012, 1-9.                                                                                     | 0.6 | 15        |
| 238 | Grain Refinement Mechanism and Evolution of Dislocation Structure of Co–Cr–Mo Alloy Subjected to High-Pressure Torsion. Materials Transactions, 2016, 57, 1109-1118.                                                        | 0.4 | 15        |
| 239 | The Effect of Ultrafine-Grained Microstructure on Creep Behaviour of 9% Cr Steel. Materials, 2018, 11, 787.                                                                                                                 | 1.3 | 15        |
| 240 | Energy dispersive X-ray microanalysis in the analytical electron microscope ISIJ International, 1989, 29, 179-190.                                                                                                          | 0.6 | 15        |
| 241 | Title is missing!. Journal of Materials Science, 2002, 37, 5223-5227.                                                                                                                                                       | 1.7 | 14        |
| 242 | A finite element analysis of the superplastic forming of an aluminum alloy processed by ECAP.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2007, 456, 236-242. | 2.6 | 14        |
| 243 | Highâ€Pressure Torsion for Giant Magnetoresistance and Better Magnetic Properties. Advanced<br>Engineering Materials, 2010, 12, 793-797.                                                                                    | 1.6 | 14        |
| 244 | Effects of High-Pressure Torsion on the Pitting Corrosion Resistance of Aluminum–Iron<br>Alloys. Materials Transactions, 2013, 54, 1642-1649.                                                                               | 0.4 | 14        |
| 245 | Incremental Feeding High-Pressure Sliding for Achieving Large Area of Severe Plastic Deformation.<br>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2018, 82, 25-31.                                    | 0.2 | 14        |
| 246 | Change in Magnetic Property of Cu-6.5 mass%Co Alloy through Processing by ECAP. Materials Transactions, 2008, 49, 102-106.                                                                                                  | 0.4 | 13        |
| 247 | Grain refinement and high strengthening of 7075 aluminum alloy by high-pressure sliding.<br>Keikinzoku/Journal of Japan Institute of Light Metals, 2012, 62, 454-458.                                                       | 0.1 | 13        |
| 248 | Electrical resistivity mapping of titanium and zirconium discs processed by high-pressure torsion for homogeneity and phase transformation evaluation. Journal of Materials Science, 2017, 52, 6778-6788.                   | 1.7 | 12        |
| 249 | Critical Temperature in Bulk Ultrafine-Grained Superconductors of Nb, V, and Ta Processed by High-Pressure Torsion. Materials Transactions, 2019, 60, 1367-1376.                                                            | 0.4 | 12        |
| 250 | High-pressure torsion to induce oxygen vacancies in nanocrystals of magnesium oxide: Enhanced light absorbance, photocatalysis and significance in geology. Materialia, 2020, 11, 100670.                                   | 1.3 | 12        |
| 251 | Complex interactions between precipitation, grain growth and recrystallization in a severely deformed Al-Zn-Mg-Cu alloy and consequences on the mechanical behavior. Materialia, 2021, 15, 101028.                          | 1.3 | 12        |
| 252 | Achieving Superplasticity of Al-1%Mg-0.2%Sc Alloy in Plate Samples Processed by Equal-channel<br>Angular Pressing. Materials Transactions, 2004, 45, 2521-2524.                                                             | 0.4 | 11        |

| #   | Article                                                                                                                                                                                                                                             | IF                    | CITATIONS             |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|
| 253 | Crystal and electronic structural changes during annealing in severely deformed Si containing metastable phases formed by high-pressure torsion. Applied Physics Letters, 2018, 113, .                                                              | 1.5                   | 11                    |
| 254 | Highâ€pressure torsion of SiO <sub>2</sub> quartz sand: Phase transformation, optical properties, and significance in geology. Journal of the American Ceramic Society, 2020, 103, 6594-6602.                                                       | 1.9                   | 11                    |
| 255 | Grain refinement and superplasticity of pipes processed by high-pressure sliding. Materials Science and Technology, 2020, 36, 877-886.                                                                                                              | 0.8                   | 11                    |
| 256 | Combination of High-Pressure Torsion with Incremental Feeding for Upsizing Sample. Materials<br>Transactions, 2018, 59, 1009-1012.                                                                                                                  | 0.4                   | 11                    |
| 257 | Cytocompatibility of Ti–6Al–7Nb through High-Pressure Torsion Processing. Materials Transactions, 2016, 57, 2020-2025.                                                                                                                              | 0.4                   | 11                    |
| 258 | Yield stress measurements on an Al-1.5% Mg alloy with submicron grain size using a miniature bending procedure. Materials Letters, 1995, 23, 283-287.                                                                                               | 1.3                   | 10                    |
| 259 | Enhancement of Strength and Ductility of Al-Ag Alloys Processed by High-Pressure Torsion and Aging.<br>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44,<br>3221-3231.                               | 1.1                   | 10                    |
| 260 | Achieving Superplasticity of Ultrafine-Grained Rod-Like AZ61 Alloy Using High-Pressure Sliding. Nippon<br>Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2015, 80, 128-133.                                                            | 0.2                   | 10                    |
| 261 | Hydrogen Embrittlement of Ultrafine-grained Austenitic Stainless Steels Processed by High-pressure<br>Torsion at Moderate Temperature. ISIJ International, 2016, 56, 1083-1090.                                                                     | 0.6                   | 10                    |
| 262 | Optimization of Microstructure and Mechanical Properties of Co–Cr–Mo Alloys by High-Pressure<br>Torsion and Subsequent Short Annealing. Materials Transactions, 2016, 57, 1887-1896.                                                                | 0.4                   | 10                    |
| 263 | Formation of metastable bc8 phase from crystalline Si0.5Ge0.5 by high-pressure torsion. Materials Characterization, 2020, 169, 110590.                                                                                                              | 1.9                   | 10                    |
| 264 | Application of three-dimensional electron tomography using bright-field imaging—Two types of<br>Si-phases in Al–Si alloy. Science and Technology of Advanced Materials, 2006, 7, 726-731.                                                           | 2.8                   | 9                     |
| 265 | Hydrogen behavior in ultrafine-grained palladium processed by high-pressure torsion. International<br>Journal of Hydrogen Energy, 2013, 38, 14879-14886.                                                                                            | 3.8                   | 9                     |
| 266 | Effects of Grain Refinement and Predeformation Impact by Severe Plastic Deformation on Creep in P92<br>Martensitic Steel. Advanced Engineering Materials, 2020, 22, 1900448.                                                                        | 1.6                   | 9                     |
| 267 | <i>In Situ</i> Synchrotron X-ray Analysis: Application of High-Pressure Sliding Process to Ti<br>Allotropic Transformation. Materials Transactions, 2021, 62, 167-176.                                                                              | 0.4                   | 9                     |
| 268 | Construction of Ti-Al-Cr Phase Diagram Using Quantitative X-ray Microanalysis in Analytical Electron<br>Microscope. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2001, 65, 382-388.                                           | 0.2                   | 8                     |
| 269 | Al–Mg–Siç³»å•金ã®çµ"ç1"ã•æ©Ÿæ¢°çš"性質―é«~引尦åŒ−ã,ã®å•-組ã¿. Keikinzoku/Journal of Japa                                                                                                                                                                  | an In <b>stit</b> ute | of <b>la</b> ght Meta |
| 270 | Principles of deformation in single crystals of two different orientations processed by equal-channel<br>angular pressing. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2009, 503, 21-27. | 2.6                   | 8                     |

| #   | Article                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Ultrahigh strength of nanocrystalline iron-based alloys produced by high-pressure torsion. Journal of Materials Science, 2010, 45, 4745-4753.                                                      | 1.7 | 8         |
| 272 | Extra Strengthening and Superplasticity of Ultrafine-Grained A2024 Alloy Produced by High-Pressure<br>Sliding. Materials Transactions, 2017, 58, 1647-1655.                                        | 0.4 | 8         |
| 273 | Hydrostatic pressure effects on superconducting transition of nanostructured niobium highly strained by high-pressure torsion. Journal of Applied Physics, 2019, 125, .                            | 1.1 | 8         |
| 274 | Phase transformations in Al-Ti-Mg powders consolidated by high-pressure torsion: Experiments and first-principles calculations. Journal of Alloys and Compounds, 2021, 889, 161815.                | 2.8 | 8         |
| 275 | A new miniature mechanical testing procedure: Application to intermetallics. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1997, 28, 2577-2582.           | 1.1 | 7         |
| 276 | Simultaneous strengthning due to grain refinement and fine precipitation. Keikinzoku/Journal of Japan<br>Institute of Light Metals, 2012, 62, 398-405.                                             | 0.1 | 7         |
| 277 | High-pressure torsion of metastable austenitic stainless steel at moderate temperatures.<br>Philosophical Magazine Letters, 2015, 95, 269-276.                                                     | 0.5 | 7         |
| 278 | Low-Temperature and High-Strain-Rate Superplasticity of Ultrafine-Grained A7075 Processed by<br>High-Pressure Torsion. Materials Transactions, 2018, 59, 1341-1347.                                | 0.4 | 7         |
| 279 | Synchrotron X-ray diffraction observation of phase transformation during annealing of Si processed by high-pressure torsion. Philosophical Magazine Letters, 2021, 101, 223-231.                   | 0.5 | 7         |
| 280 | Production of Superplastic Ti–6Al–7Nb Alloy Using High-Pressure Sliding Process. Materials<br>Transactions, 2019, 60, 1785-1791.                                                                   | 0.4 | 7         |
| 281 | Fatigue Property and Cytocompatibility of a Biomedical Co–Cr–Mo Alloy Subjected to a High Pressure<br>Torsion and a Subsequent Short Time Annealing. Materials Transactions, 2020, 61, 361-367.    | 0.4 | 7         |
| 282 | Quantitative X-ray Microanalysis in Analytical Electron Microscopy. Materials Transactions, JIM, 1998, 39, 947-958.                                                                                | 0.9 | 6         |
| 283 | High-pressure torsion of thick Cu and Al–Mg–Sc ring samples. Journal of Materials Science, 2015, 50,<br>4888-4897.                                                                                 | 1.7 | 6         |
| 284 | Microstructures and the Mechanical Properties of the Al–Li–Cu Alloy Strengthened by the Combined<br>Use of Accumulative Roll Bonding and Aging. Advanced Engineering Materials, 2020, 22, 1900561. | 1.6 | 6         |
| 285 | The Effect of Predeformation on Creep Strength of 9% Cr Steel. Materials, 2020, 13, 5330.                                                                                                          | 1.3 | 6         |
| 286 | Magnetic measurements of hydrogen desorption from palladium hydride PdH0.64 prepared by severe plastic deformation. Journal of Applied Physics, 2020, 127, .                                       | 1.1 | 6         |
| 287 | Superplasticity of ultrafine-grained Al-3%Mg-0.2%Sc alloy produced by equal-channel angular pressing Keikinzoku/Journal of Japan Institute of Light Metals, 2000, 50, 376-380.                     | 0.1 | 5         |
| 288 | Distributions of Hardness and Strain during Compression in Pure Aluminum Processed with<br>Equal-Channel Angular Pressing and Subsequent Annealing. Materials Transactions, 2009, 50, 27-33.       | 0.4 | 5         |

| #   | Article                                                                                                                                                                                                               | IF             | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|
| 289 | Effects of Low Rotational Speed on Crystal Orientation of<br>Bi <sub>2</sub> Te <sub>3</sub> -Based Thermoelectric Semiconductors Deformed<br>by High-Pressure Torsion. Materials Transactions, 2012, 53, 588-591.    | 0.4            | 5         |
| 290 | Application of high-pressure torsion to Al-6Â%Cu-0.4Â%Zr alloy for ultrafine-grain refinement and superplasticity. Journal of Materials Science, 2014, 49, 6689-6695.                                                 | 1.7            | 5         |
| 291 | Aging Behavior of Ultrafine-Grained Al–Mg–Si–X (X = Cu, Ag, Pt, Pd) Alloys<br>Produced by High-Pressure Torsion. Materials Transactions, 2014, 55, 640-645.                                                           | 0.4            | 5         |
| 292 | Contactless measurement of electrical conductivity for bulk nanostructured silver prepared by high-pressure torsion: A study of the dissipation process of giant strain. Journal of Applied Physics, 2017, 122, .     | 1.1            | 5         |
| 293 | Microstructural Evolution During Processing by Severe Plastic Deformation. , 2000, , 149-154.                                                                                                                         |                | 5         |
| 294 | Influence of High Pressure Sliding and Rotary Swaging on Creep Behavior of P92 Steel at 500 °C.<br>Metals, 2021, 11, 2044.                                                                                            | 1.0            | 5         |
| 295 | Structural and thermoelectric properties of CH <sub>3</sub> NH <sub>3</sub> SnI <sub>3</sub><br>perovskites processed by applying high pressure with shear strain. Materials Research Letters, 2022, 10,<br>521-529.  | 4.1            | 5         |
| 296 | Development of ultra high strength (1GPa) aluminum alloy using severe plastic deformation under<br>high pressure. Keikinzoku/Journal of Japan Institute of Light Metals, 2017, 67, 519-520.                           | 0.1            | 4         |
| 297 | Microstructures and Mechanical Properties of AZ61 Magnesium Alloy after Processing with High<br>Presser Torsion. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2007, 71, 213-217.                | 0.2            | 3         |
| 298 | Aging behavior of ultrafine-grained Al^ ^ndash;Mg^ ^ndash;Si^ ^ndash;X (X=Cu, Ag, Pt, Pd) alloys<br>produced by high-pressure torsion. Keikinzoku/Journal of Japan Institute of Light Metals, 2012, 62,<br>448-453.   | 0.1            | 3         |
| 299 | Hydrogen diffusion in ultrafine-grained iron with the body-centered cubic crystal structure.<br>Philosophical Magazine Letters, 2017, 97, 158-168.                                                                    | 0.5            | 3         |
| 300 | Continuous high-pressure torsion of pure Al and Al-2Âwt% Fe alloy using multi-wires. Journal of<br>Materials Science, 2021, 56, 8679-8688.                                                                            | 1.7            | 3         |
| 301 | Achieving Superplasticity and Superplastic Forming through Severe Plastic Deformation. Materials<br>Research Society Symposia Proceedings, 2000, 634, 851.                                                            | 0.1            | 2         |
| 302 | Severe Plastic Deformation under High Pressure for Production of Superplastic Materials. Materials<br>Science Forum, 0, 838-839, 287-293.                                                                             | 0.3            | 2         |
| 303 | Measurement of Interdiffusivity by Quantitative X-ray Microanalysis Using Analytical Electron<br>Microscope in Ni-Al System. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1993, 57,<br>604-611. | 0.2            | 2         |
| 304 | Phase Separation in TiAl(L1 <sub>0</sub> )-(Al,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 147 Td (Cr)&l<br>the Japan Institute of Metals, 2000, 64, 609-615.                                                              | t;SUB>3<br>0.2 | 3<br>2    |
| 305 | Deformation of Second Phase Particles in Al Alloy Using Severe Plastic Deformation Process. Materia<br>Japan, 2003, 42, 863-863.                                                                                      | 0.1            | 2         |
| 306 | Structural Evolution and Deformation in an Aluminum-Based Solid Solution Alloy with Submicron                                                                                                                         | 0.1            | 1         |

306 Grain Size. Materials Research Society Symposia Proceedings, 1993, 319, 293.

| #   | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 307 | Rotation of Mo-Fibers in Directionally Solidified Ni-Al-Mo Eutectic Alloys. Journal of Materials<br>Science, 1999, 7, 119-129.                                                                                                       | 1.2 | 1         |
| 308 | The Nature of the Stress-Strain Relationship in Aluminum and Copper over a Wide Range of Strain. , 2005, , 87-94.                                                                                                                    |     | 1         |
| 309 | Influence of high-pressure torsion on formation/destruction of nano-sized spinodal structures. AIP<br>Conference Proceedings, 2018, , .                                                                                              | 0.3 | 1         |
| 310 | Homogeneous Strain Introduction Using Reciprocation Technique in High-Pressure Sliding.<br>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52,<br>3860-3870.                            | 1.1 | 1         |
| 311 | Severe plastic deformation. Series in Materials Science and Engineering, 2004, , .                                                                                                                                                   | 0.1 | 1         |
| 312 | Recrystallization of Bi <sub>88</sub> Sb <sub>12</sub> thermoelectric<br>semiconductors processed by High Pressure Torsion. Transactions of the Materials Research Society<br>of Japan, 2011, 36, 41-46.                             | 0.2 | 1         |
| 313 | Fabrication of high-strength and high-ductility laminated A2024 aluminum alloy/aluminum composite<br>by severe plastic deformation under high pressure. Keikinzoku/Journal of Japan Institute of Light<br>Metals, 2017, 67, 179-185. | 0.1 | 1         |
| 314 | Severe Plastic Deformation under High Pressure: Upsizing Sample Dimensions. Nippon Kinzoku<br>Gakkaishi/Journal of the Japan Institute of Metals, 2022, 86, 107-120.                                                                 | 0.2 | 1         |
| 315 | A New Analytical Procedure for the Identification of High Temperature Deformation Mechanisms<br>Using the Strain Rate Change Test. Materials Transactions, JIM, 1991, 32, 339-344.                                                   | 0.9 | 0         |
| 316 | Miniaturized Double-Shear Testing Procedure for Evaluation of High Temperature Deformation in Al and Al–Mg Solid Solution Alloy. Materials Transactions, JIM, 1996, 37, 349-352.                                                     | 0.9 | 0         |
| 317 | An Examination of the Deformation Process in Equal-Channel Angular Pressing. Materials Research<br>Society Symposia Proceedings, 1999, 601, 347.                                                                                     | 0.1 | 0         |
| 318 | Processing by Equal-Channel Angular Pressing: Potential for Achieving Superplasticity. Materials<br>Research Society Symposia Proceedings, 1999, 601, 365.                                                                           | 0.1 | 0         |
| 319 | Diffusion Analysis across Grain Boundary in Al-3.7 mass%Cu Alloy Using Analytical Electron<br>Microscopy. Materials Transactions, 2003, 44, 1336-1342.                                                                               | 0.4 | Ο         |
| 320 | Properties of Aluminum Alloys Processed by Equal Channel Angular Pressing Using a 60 Degrees Die. ,<br>2005, , 459-464.                                                                                                              |     | 0         |
| 321 | High Resolution TEM Observation of Nanocrystalline Silicon Fabricated by High Pressure Torsion (HPT). Microscopy and Microanalysis, 2015, 21, 1783-1784.                                                                             | 0.2 | Ο         |
| 322 | GRAIN REFINEMENT AND MICROSTRUCTURE EVOLUTION IN ALUMINUM A2618 ALLOY BY HIGH-PRESSURE TORSION. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .                                                                             | 0.3 | 0         |
| 323 | PM-22Microstructure observation of HPT processed Al-2.5mass%Li(-2.0mass%Cu) alloy. Microscopy (Oxford, England), 2018, 67, i46-i46.                                                                                                  | 0.7 | 0         |
| 324 | Developing high-performance light metallic materials through microstructural refinement using<br>severe plastic deformation. Keikinzoku/Journal of Japan Institute of Light Metals, 2018, 68, 407-417.                               | 0.1 | 0         |

| #   | Article                                                                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 325 | Correlation between TEM, SAXS and DSC to investigate the influence of SPD on precipitation mechanisms of an Al-Zn-Mg-Cu alloy. MATEC Web of Conferences, 2020, 326, 08006.     | 0.1 | 0         |
| 326 | Simultaneous Enhancement of Tensile Strength and Ductility in Commercial-Purity Aluminum (A1050)<br>by Accumulative Roll Bonding (ARB). SSRN Electronic Journal, 0, , .        | 0.4 | 0         |
| 327 | SIM Observation of Ultrafine-Grained Al Alloy After Superplastic Deformation. Materia Japan, 2000, 39, 984-984.                                                                | 0.1 | 0         |
| 328 | Relationship between Misorientation Angle and Precipitate Free Zones of Warm Rolled 7475 Based<br>Aluminum Alloy Sheet. Materia Japan, 2003, 42, 857-857.                      | 0.1 | 0         |
| 329 | Observation of Deformed GP Zone on the Shear Bands and Quantitative Analysis of Relative Strain by<br>Three-dimensional Electron Tomography. Materia Japan, 2007, 46, 788-788. | 0.1 | 0         |
| 330 | Microstructures and Mechanical properties of Al-Al2O3 Composites Processed by Disk-HPT and Ring-HPT. , 2012, , 1011-1016.                                                      |     | 0         |
| 331 | Significance of High-Pressure Torsion (HPT) on Solid-State Hydrogen Storage Properties. , 2017, , .                                                                            |     | 0         |
| 332 | Thermal conductivity reduction of bulk Si and Si/Ge material prepared by HPT process. The Proceedings of Conference of Kyushu Branch, 2017, 2017.70, 104.                      | 0.0 | 0         |
| 333 | Thermal Conductivity Reduction of Bulk GaAs using Giant Strain. The Proceedings of the Thermal Engineering Conference, 2018, 2018, 0176.                                       | 0.0 | 0         |
| 334 | ECAP: Processing Fundamentals and Recent Progresses. , 0, , 201-215.                                                                                                           |     | 0         |