S Mohsen Taghavi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11902819/publications.pdf

Version: 2024-02-01

687363 752698 34 492 13 20 citations g-index h-index papers 34 34 34 256 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Occurrence and Characterization of the Bacterial Spot Pathogen <i><scp>X</scp>anthomonas euvesicatoria</i> i> on Pepper in Iran. Journal of Phytopathology, 2016, 164, 722-734.	1.0	43
2	Molecular Typing Reveals High Genetic Diversity of Xanthomonas translucens Strains Infecting Small-Grain Cereals in Iran. Applied and Environmental Microbiology, 2019, 85, .	3.1	37
3	Comparative Genomics and Phylogenetic Analyses Suggest Several Novel Species within the Genus <i>Clavibacter</i> , Including Nonpathogenic Tomato-Associated Strains. Applied and Environmental Microbiology, 2020, 86, .	3.1	33
4	Genomics-Enabled Novel Insight Into the Pathovar-Specific Population Structure of the Bacterial Leaf Streak Pathogen Xanthomonas translucens in Small Grain Cereals. Frontiers in Microbiology, 2021, 12, 674952.	3.5	31
5	Occurrence and characterization of a new red-pigmented variant of Curtobacterium flaccumfaciens, the causal agent of bacterial wilt of edible dry beans in Iran. European Journal of Plant Pathology, 2016, 146, 129-145.	1.7	30
6	Multiple Introductions of Tomato Pathogen Clavibacter michiganensis subsp. <i>michiganensis</i> into Iran as Revealed by a Global-Scale Phylogeographic Analysis. Applied and Environmental Microbiology, 2019, 85, .	3.1	30
7	Phenotypic and Molecular-Phylogenetic Analysis Provide Novel Insights into the Diversity of <i>Curtobacterium flaccumfaciens</i>). Phytopathology, 2018, 108, 1154-1164.	2.2	29
8	Host range and phylogenetic analysis of Xanthomonas alfalfae causing bacterial leaf spot of alfalfa in Iran. European Journal of Plant Pathology, 2018, 150, 267-274.	1.7	29
9	Complete Genome Sequencing Provides Novel Insight Into the Virulence Repertories and Phylogenetic Position of Dry Beans Pathogen <i>Curtobacterium flaccumfaciens</i> Phytopathology, 2021, 111, 268-280.	2.2	26
10	Transcription Activator-Like Effectors Diversity in Iranian Strains of <i>Xanthomonas translucens</i> . Phytopathology, 2020, 110, 758-767.	2.2	24
11	Pathogenicity, host range and phylogenetic position of Agrobacterium species associated with sugar beet crown gall outbreaks in Southern Iran. European Journal of Plant Pathology, 2017, 147, 721-730.	1.7	20
12	Two Novel Genomospecies in the Agrobacterium tumefaciens Species Complex Associated with Rose Crown Gall. Phytopathology, 2019, 109, 1859-1868.	2.2	19
13	Bacterial Brown Pit, a New Disease of Edible Mushrooms Caused by <i>Mycetocola</i> sp Plant Disease, 2020, 104, 1445-1454.	1.4	16
14	Xanthomonas bonasiae sp. nov. and Xanthomonas youngii sp. nov., isolated from crown gall tissues. International Journal of Systematic and Evolutionary Microbiology, 2022, 72, .	1.7	16
15	Genomic Analyses of Rose Crown Gall-Associated Bacteria Revealed Two New <i>Agrobacterium </i> Species: <i>Agrobacterium burrii</i> sp. nov. and <i>Agrobacterium shirazense</i> sp. nov Phytopathology, 2022, 112, 1208-1213.	2.2	14
16	Etiology of leaf spot and fruit canker symptoms on stone fruits and nut trees in Iran. Journal of Plant Pathology, 2019, 101, 1133-1142.	1.2	12
17	Phenotypic and Molecular-Phylogenetic Analyses Reveal Distinct Features of Crown Gall-Associated <i>Xanthomonas</i>	3.0	11
18	Rutin promoted resistance of tomato against Xanthomonas perforans. European Journal of Plant Pathology, 2018, 151, 527-531.	1.7	10

#	Article	IF	CITATIONS
19	Potato-Infecting <i>Ralstonia solanacearum</i> Strains in Iran Expand Knowledge on the Global Diversity of Brown Rot Ecotype of the Pathogen. Phytopathology, 2020, 110, 1647-1656.	2.2	8
20	Transcript analysis of some defense genes of tomato in response to host and non-host bacterial pathogens. Molecular Biology Research Communications, 2017, 6, 177-183.	0.3	8
21	A PCR-based assay for differentiating A- and A*-type strains of Xanthomonas citri subsp. citri, the causal agent of Asiatic citrus canker. Journal of General Plant Pathology, 2014, 80, 85-89.	1.0	7
22	Whole Genome Resources of 17 <i>Curtobacterium flaccumfaciens</i> Strains Including Pathotypes of <i>C.Âflaccumfaciens</i> pv. <i>betae</i> , <i>C. flaccumfaciens</i> pv. <i>oortii</i> , and <i>C. flaccumfaciens</i> pv. <i>poinsettiae</i> . Molecular Plant-Microbe Interactions, 2022, 35, 352-356.	2.6	6
23	Host specificity, pathogenicity and the presence of virulence genes in Iranian strains of <i>Pseudomonas syringae </i> pv. <i>syringae </i> from different hosts. Archives of Phytopathology and Plant Protection, 2014, 47, 2377-2391.	1.3	5
24	Effect of \hat{I}^2 -aminobutyric acid on resistance of tomato against Pectobacterium carotovorum subsp. carotovorum. Journal of Plant Diseases and Protection, 2016, 123, 155-161.	2.9	5
25	Genome Resource of Two Potato Strains of <i>Ralstonia solanacearum</i> Biovar 2 (Phylotype IIB) Tj ETQq1 1 CPlant-Microbe Interactions, 2020, 33, 872-875.).784314 r 2.6	gBT /Overloc 5
26	Profiling expression of lipoxygenase in cucumber during compatible and incompatible plant-pathogen interactions. Physiology and Molecular Biology of Plants, 2016, 22, 175-177.	3.1	4
27	Induction of resistance in pepper against Xanthomonas euvesicatoria by \hat{I}^2 -aminobutyric acid. Australasian Plant Disease Notes, 2017, 12, 1.	0.7	3
28	Serratia marcescens associated with squash leaf chlorosis and necrotic spots in Iran. Journal of Plant Pathology, 2018, 100, 85-89.	1.2	3
29	Induction of superoxide dismutase, malate dehydrogenase and phenylalanine ammonia-lyase during enhancing resistance of common bean against Xanthomonas axonopodis pv. phaseoli by exogenous salicylic acid. Journal of Plant Diseases and Protection, 2016, 123, 83-87.	2.9	2
30	Discrimination of Shirazi thyme from thymus species and antioxidant activity prediction using chemometrics and FT-IR spectroscopy. Journal of the Iranian Chemical Society, 2018, 15, 259-268.	2.2	2
31	Phenotypically and Genotypically Heterogeneous Strains of Pseudomonas syringae Associated With Alfalfa Leaf Spot Disease in Iran. Plant Disease, 2019, 103, 3199-3208.	1.4	2
32	First Report of Brown Spot on White Button Mushroom (Agaricus bisporus) Caused by Cedecea neteri in Iran. Plant Disease, 2021, , .	1.4	2
33	Application of counter propagation artificial neural network for classification and genetic diversity assessment of some <i>Pseudomonas</i> species. Journal of Theoretical and Computational Chemistry, 2015, 14, 1550042.	1.8	0
34	Induction of resistance in tomato against <i>Xanthomonas perforans</i> by lipopolysaccharides of the pathogen. Archives of Phytopathology and Plant Protection, 2017, 50, 649-657.	1.3	0