Sungjoo Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11902486/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Kick-Starting Roadmapping Implementation in Corporate Settings: Lessons Learned From IHI Corporation. International Journal of Innovation and Technology Management, 2023, 20, .	1.4	1
2	Forecasting Forward Patent Citations: Comparison of Citation-Lag Distribution, Tobit Regression, and Deep Learning Approaches. IEEE Transactions on Engineering Management, 2022, 69, 1185-1196.	3.5	8
3	Six different approaches to defining and identifying promising technology through patent analysis. Technology Analysis and Strategic Management, 2022, 34, 961-973.	3.5	4
4	Designing a business intelligence system to support industry analysis and innovation policy. Science and Public Policy, 2022, 49, 414-426.	2.4	2
5	Potential of patent image data as technology intelligence source. Journal of Informetrics, 2022, 16, 101263.	2.9	2
6	Sustaining Organizational Roadmapping Implementation––Lessons Learned from Subsea 7. Research Technology Management, 2022, 65, 50-57.	0.8	5
7	Technological trend mining: identifying new technology opportunities using patent semantic analysis. Information Processing and Management, 2022, 59, 102993.	8.6	11
8	Opportunity-driven technology roadmapping: The case of 5G mobile services. Technological Forecasting and Social Change, 2021, 163, 120452.	11.6	11
9	ldentifying emerging technologies to envision a future innovation ecosystem: A machine learning approach to patent data. Scientometrics, 2021, 126, 5431-5476.	3.0	18
10	From stones to jewellery: Investigating technology opportunities from expired patents. Technovation, 2021, 103, 102235.	7.8	16
11	Practical Roadmapping Implementation: What We Learned From QinetiQ Group. IEEE Engineering Management Review, 2021, 49, 108-114.	1.3	6
12	Open innovation at the national level: Towards a global innovation system. Technological Forecasting and Social Change, 2020, 151, 119842.	11.6	27
13	Characterizing Maturity Levels for Organization-Wide Roadmapping Implementation. IEEE Engineering Management Review, 2020, 48, 133-143.	1.3	14
14	A systematic approach to prioritizing R&D projects based on customer-perceived value using opinion mining. Technovation, 2020, 98, 102164.	7.8	16
15	What constitutes a promising technology in the era of open innovation? An investigation of patent potential from multiple perspectives. Technological Forecasting and Social Change, 2020, 157, 120046.	11.6	19
16	Investigating technology opportunities: the use of SAOx analysis. Scientometrics, 2019, 118, 45-70.	3.0	26
17	Technology development strategies and policy support for the solar energy industry under technological turbulence. Energy Policy, 2019, 124, 206-214.	8.8	28
18	Integrating fuzzy-set theory into technology roadmap development to support decision-making. Technology Analysis and Strategic Management, 2019, 31, 447-461.	3.5	10

#	Article	IF	CITATIONS
19	Deriving technology intelligence from patents: Preposition-based semantic analysis. Journal of Informetrics, 2018, 12, 217-236.	2.9	43
20	Using a design structure matrix to support technology roadmapping for product–service systems. Technology Analysis and Strategic Management, 2018, 30, 337-350.	3.5	16
21	Technology assessment model for sustainable development of LNG terminals. Journal of Cleaner Production, 2018, 172, 927-937.	9.3	24
22	How to improve a technology evaluation model: A data-driven approach. Technovation, 2018, 72-73, 1-12.	7.8	14
23	How Can Big Data Complement Expert Analysis? A Value Chain Case Study. Sustainability, 2018, 10, 709.	3.2	5
24	What factors of earlyâ€stage innovative projects are likely to drive projects' success? A longitudinal analysis of Korean entrepreneurial firms. R and D Management, 2018, 48, 627-640.	5.3	2
25	Identifying promising technologies using patents: A retrospective feature analysis and a prospective needs analysis on outlier patents. Technological Forecasting and Social Change, 2018, 128, 118-132.	11.6	46
26	Discovering new technology opportunities based on patents: Text-mining and F-term analysis. Technovation, 2017, 60-61, 1-14.	7.8	66
27	Forecasting and identifying multi-technology convergence based on patent data: the case of IT and BT industries in 2020. Scientometrics, 2017, 111, 47-65.	3.0	54
28	Service Technology: Definition and Characteristics Based on a Patent Database. Service Science, 2017, 9, 147-166.	1.3	12
29	Identifying new business opportunities from competitor intelligence: An integrated use of patent and trademark databases. Technological Forecasting and Social Change, 2017, 119, 170-183.	11.6	49
30	Patterns of Protecting Both Technological and Nontechnological Innovation for Service Offerings: Case of the Video-Game Industry. Service Science, 2017, 9, 192-204.	1.3	5
31	Essential patent portfolios to monitor technology standardization strategies: Case of LTE-A technologies. Journal of Engineering and Technology Management - JET-M, 2017, 45, 18-36.	2.7	10
32	R&D Project Selection Incorporating Customer-Perceived Value and Technology Potential: The Case of the Automobile Industry. Sustainability, 2017, 9, 1918.	3.2	10
33	Evaluating Internal Technological Capabilities in Energy Companies. Energies, 2016, 9, 145.	3.1	6
34	Open Innovation Projects in SMEs as an Engine for Sustainable Growth. Sustainability, 2016, 8, 146.	3.2	22
35	Technology-Based New Service Idea Generation for Smart Spaces: Application of 5G Mobile Communication Technology. Sustainability, 2016, 8, 1211.	3.2	8
36	Towards robust technology roadmapping: How to diagnose the vulnerability of organisational plans. Technological Forecasting and Social Change, 2016, 111, 164-175.	11.6	9

#	Article	IF	CITATIONS
37	Development of new technology-based services. Service Industries Journal, 2016, 36, 200-222.	8.3	14
38	Identifying emerging core technologies for the future: Case study of patents published by leading telecommunication organizations. Telecommunications Policy, 2016, 40, 956-970.	5.3	49
39	A visual context-based market analysis of mobile application services. Management Decision, 2016, 54, 2106-2132.	3.9	6
40	How industrial convergence happens: A taxonomical approach based on empirical evidences. Technological Forecasting and Social Change, 2016, 107, 112-120.	11.6	54
41	R&D support services for small and medium-sized enterprises: The different perspectives of clients and service providers, and the roles of intermediaries. Science and Public Policy, 2016, , scw006.	2.4	1
42	An empirical analysis on purposes, drivers and activities of technology opportunity discovery: the case of Korean SMEs in the manufacturing sector. R and D Management, 2016, 46, 13-35.	5.3	29
43	Perceptual Factors Affecting the Tendency to Collaboration in SMEs: Perceived Importance of Collaboration Modes and Partners. Journal of Technology Management and Innovation, 2015, 10, 18-31.	0.7	6
44	Characteristics of new product development activities in SMEs: an empirical analysis of the Korean IT sector. Asian Journal of Technology Innovation, 2015, 23, 230-254.	2.8	4
45	Keyword selection and processing strategy for applying text mining to patent analysis. Expert Systems With Applications, 2015, 42, 4348-4360.	7.6	142
46	Patent databases for innovation studies: A comparative analysis of USPTO, EPO, JPO and KIPO. Technological Forecasting and Social Change, 2015, 92, 332-345.	11.6	122
47	Development of an R&D process model for enhancing the quality of R&D: comparison with CMMI, ISO and EIRMA. Total Quality Management and Business Excellence, 2015, 26, 746-761.	3.8	6
48	Antecedents of open innovation at the project level: empirical analysis of <scp>K</scp> orean firms. R and D Management, 2015, 45, 411-439.	5.3	46
49	A hybrid Bass–Markov model for the diffusion of a dual-type device-based telecommunication service: The case of WiBro service in Korea. Computers and Industrial Engineering, 2015, 79, 85-94.	6.3	9
50	An Empirical Study to Support Intellectual Property Strategy Planning in Firms : The Use of Intellectual Property Roadmap. Journal of Korean Institute of Industrial Engineers, 2015, 41, 559-571.	0.1	0
51	Service-Oriented Factors Affecting the Adoption of Smartphones. Journal of Technology Management and Innovation, 2014, 9, 98-117.	0.7	4
52	Strategic planning using service roadmaps. Service Industries Journal, 2014, 34, 999-1020.	8.3	8
53	Issues and Efforts for Technology-Humanities Convergence : Empirical Analysis of Korean SMEs. Journal of Korean Institute of Industrial Engineers, 2014, 40, 451-461.	0.1	2
54	Identifying and evaluating strategic partners for collaborative R&D: Index-based approach using patents and publications. Technovation, 2013, 33, 211-224.	7.8	76

#	Article	IF	CITATIONS
55	Patterns of technological innovation and evolution in the energy sector: A patent-based approach. Energy Policy, 2013, 59, 415-432.	8.8	93
56	User entric Service Map for Identifying New Service Opportunities from Potential Needs: A Case of App Store Applications. Creativity and Innovation Management, 2013, 22, 241-264.	3.3	24
57	Identifying Promising IT Products for SMEs under the Concept of Business Ecosystem. Journal of Korean Institute of Industrial Engineers, 2013, 39, 61-72.	0.1	7
58	Emerging Technologies in Mobile Communications for 2020. The Journal of Korean Institute of Communications and Information Sciences, 2013, 38A, 108-126.	0.1	4
59	Patterns of innovation in digital content services: The case of App Store applications. Innovation: Management, Policy and Practice, 2012, 14, 540-556.	3.9	17
60	Analysis of document-mining techniques and tools for technology intelligence: discovering knowledge from technical documents. International Journal of Technology Management, 2012, 60, 130.	0.5	9
61	Modeling and analyzing technology innovation in the energy sector: Patent-based HMM approach. Computers and Industrial Engineering, 2012, 63, 564-577.	6.3	33
62	Triggering navigators for innovative system design: The case of lab-on-a-chip technology. Expert Systems With Applications, 2012, 39, 12451-12459.	7.6	15
63	Analyzing the Economic Effect of Mobile Network Sharing in Korea. ETRI Journal, 2012, 34, 308-318.	2.0	8
64	Patent analysis for promoting technology transfer in multi-technology industries: the Korean aerospace industry case. Journal of Technology Transfer, 2012, 37, 355-374.	4.3	32
65	Managing uncertainty to improve decision-making in NPD portfolio management with a fuzzy expert system. Expert Systems With Applications, 2012, 39, 9868-9885.	7.6	64
66	Corporate document mining for technology intelligence: an analysis of needs, utilisation and possibilities. International Journal of Technology Intelligence and Planning, 2011, 7, 110.	0.3	5
67	Technology clustering based on evolutionary patterns: The case of information and communications technologies. Technological Forecasting and Social Change, 2011, 78, 953-967.	11.6	59
68	Technology roadmapping for technology-based product–service integration: A case study. Journal of Engineering and Technology Management - JET-M, 2011, 28, 128-146.	2.7	88
69	The customisation framework for roadmapping product-service integration. Service Business, 2011, 5, 213-236.	4.2	40
70	Identifying new business areas using patent information: A DEA and text mining approach. Expert Systems With Applications, 2011, 38, 2933-2941.	7.6	50
71	How to design and utilize online customer center to support new product concept generation. Expert Systems With Applications, 2011, 38, 10638-10647.	7.6	47
72	The Competitive Growth Pattern of Mobile Telecommunications in Korea. , 2011, , 18-35.		1

5

#	Article	IF	CITATIONS
73	Development and application of a keyword-based knowledge map for effective R&D planning. Scientometrics, 2010, 85, 803-820.	3.0	45
74	Inter-technology networks to support innovation strategy: An analysis of Korea's new growth engines. Innovation: Management, Policy and Practice, 2010, 12, 88-104.	3.9	31
75	Open innovation in SMEs—An intermediated network model. Research Policy, 2010, 39, 290-300.	6.4	1,098
76	Technology Co-evolution Analysis in the Energy Sector. Springer Proceedings in Physics, 2010, , 41-48.	0.2	0
77	Business planning based on technological capabilities: Patent analysis for technology-driven roadmapping. Technological Forecasting and Social Change, 2009, 76, 769-786.	11.6	185
78	ICT Co-evolution and Korean ICT strategy—An analysis based on patent data. Telecommunications Policy, 2009, 33, 253-271.	5.3	62
79	An approach to discovering new technology opportunities: Keyword-based patent map approach. Technovation, 2009, 29, 481-497.	7.8	333
80	Using patent information for designing new product and technology: keyword based technology roadmapping. R and D Management, 2008, 38, 169-188.	5.3	136
81	Development of an integrated productâ€service roadmap with QFD. Journal of Service Management, 2008, 19, 621-638.	2.0	72
82	Customer satisfaction factors of mobile commerce in Korea. Internet Research, 2008, 18, 313-335.	4.9	152
83	Applying technology roadâ€maps in project selection and planning. International Journal of Quality and Reliability Management, 2008, 25, 39-51.	2.0	19
84	Web-based supporting system for Technology Roadmap: development, application and integration. International Journal of Technology Intelligence and Planning, 2008, 4, 165.	0.3	3
85	Technology roadmapping for R&D planning: The case of the Korean parts and materials industry. Technovation, 2007, 27, 433-445.	7.8	103
86	Using Patent Information for New Product Development: Keyword-Based Technology Roadmapping Approach. , 2006, , .		10
87	Customization of technology roadmaps according to roadmapping purposes: Overall process and detailed modules. Technological Forecasting and Social Change, 2005, 72, 567-583.	11.6	198
88	The idiosyncrasy and dynamism of technological innovation across industries: patent citation analysis. Technology in Society, 2005, 27, 471-485.	9.4	77
89	Comparative Analysis of R&D-Based Innovation Capabilities in SMEs to Design Innovation Policy. Science and Public Policy, 0, , scw073.	2.4	5