Khaled D Khalil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1190134/publications.pdf

Version: 2024-02-01

		516561	501076
36	822	16	28
papers	citations	h-index	g-index
39	39	39	804
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	VEGFR2 and hepatocellular carcinoma inhibitory activities of trisubstituted triazole derivatives. Journal of Molecular Structure, 2022, 1250, 131832.	1.8	13
2	Bio-Based (Chitosan-ZnO) Nanocomposite: Synthesis, Characterization, and Its Use as Recyclable, Ecofriendly Biocatalyst for Synthesis of Thiazoles Tethered Azo Groups. Polymers, 2022, 14, 386.	2.0	19
3	Chitosan-Strontium Oxide Nanocomposite: Preparation, Characterization, and Catalytic Potency in Thiadiazoles Synthesis. Polymers, 2022, 14, 2827.	2.0	10
4	Synthesis, characterization and optical properties of chitosan–La2O3 nanocomposite. Bulletin of Materials Science, 2022, 45, .	0.8	3
5	Synthesis, Characterization of Chitosan-Aluminum Oxide Nanocomposite for Green Synthesis of Annulated Imidazopyrazol Thione Derivatives. Polymers, 2021, 13, 1160.	2.0	12
6	Solvent-Free Mechanochemical Synthesis of High Transition Biphenyltetracarboxydiimide Liquid Crystals. Molecules, 2021, 26, 3035.	1.7	7
7	Synthesis of Chitosan-La2O3 Nanocomposite and Its Utility as a Powerful Catalyst in the Synthesis of Pyridines and Pyrazoles. Molecules, 2021, 26, 3689.	1.7	8
8	Chitosan/CuO nanocomposite films mediated regioselective synthesis of 1,3,4-trisubstituted pyrazoles under microwave irradiation. Journal of Saudi Chemical Society, 2021, 25, 101276.	2.4	13
9	Heterogeneous Hybrid Nanocomposite Based on Chitosan/Magnesia Hybrid Films: Ecofriendly and Recyclable Solid Catalysts for Organic Reactions. Polymers, 2021, 13, 3583.	2.0	7
10	Synthesis, structural, dielectric and optical properties of <i>chitosan-MgO nanocomposite</i> Journal of Taibah University for Science, 2020, 14, 975-983.	1.1	26
11	Structure and thermal investigation of the effect of laser radiation in Chitosan-MgO nanocomposite film. Radiation Effects and Defects in Solids, 2020, 175, 422-432.	0.4	3
12	Structural Properties and Catalytic Activity of Binary Poly (vinyl alcohol)/Al2O3 Nanocomposite Film for Synthesis of Thiazoles. Catalysts, 2020, 10, 100.	1.6	19
13	Synthesis, characterization and application of copper oxide chitosan nanocomposite for green regioselective synthesis of [1,2,3]triazoles. International Journal of Biological Macromolecules, 2019, 130, 928-937.	3.6	43
14	Chitosan-MgO Nanocomposite: One Pot Preparation and Its Utility as an Ecofriendly Biocatalyst in the Synthesis of Thiazoles and [1,3,4]thiadiazoles. Nanomaterials, 2018, 8, 928.	1.9	32
15	Synthesis, Biological Evaluation, and Molecular Docking of Novel Thiazoles and [1,3,4]Thiadiazoles Incorporating Sulfonamide Group as <scp>DHFR</scp> Inhibitors. Chemistry and Biodiversity, 2018, 15, e1800231.	1.0	11
16	Chitosan-g-poly(4-acrylamidobenzenesulfonamide) copolymers: synthesis, characterization, and bioactivity. Journal of Polymer Research, 2017, 24, 1.	1.2	3
17	Synthesis and SAR Study of the Novel Thiadiazole–Imidazole Derivatives as a New Anticancer Agents. Chemical and Pharmaceutical Bulletin, 2016, 64, 1356-1363.	0.6	22
18	A novel, efficient, and recyclable biocatalyst for Michael addition reactions and its iron(<scp>iii</scp>) complex as promoter for alkyl oxidation reactions. Catalysis Science and Technology, 2016, 6, 1410-1416.	2.1	24

#	Article	IF	Citations
19	Synthesis and Antihypertensive α-Blocking Activity Evaluation of Thiazole Derivatives Bearing Pyrazole Moiety. Heterocycles, 2015, 91, 1763.	0.4	24
20	Synthesis of chitosanâ€ <i>graft</i> â€poly[2â€eyanoâ€1â€(pyridinâ€3â€yl)allyl acrylate] copolymer from a novel monomer, prepared using a Morita–Baylis–Hillman reaction, and characterization of its antimicrobial activity. Polymer International, 2014, 63, 2042-2051.	1.6	5
21	Crystallinity, antimicrobial activity and dyeing properties of chitosan-g-poly(N-acryloyl morpholine) copolymer. European Polymer Journal, 2014, 58, 164-172.	2.6	19
22	Studies with Enaminals. New Efficient Synthetic Route to Functionally Substituted Pyridines, Pyrazoles, and Pyrimidines. Current Organic Synthesis, 2014, 11, 922-928.	0.7	1
23	Synthesis and characterization of chitosan-g-poly(2-(furan-2-carbonyl)-acrylonitrile): Grafting of chitosan using a novel monomer prepared by a Baylis–Hillman reaction. European Polymer Journal, 2013, 49, 1662-1672.	2.6	13
24	Chitosan Based Heterogeneous Catalyses: Chitosan-Grafted-Poly(4-Vinylpyridne) as an Efficient Catalyst for Michael Additions and Alkylpyridazinyl Carbonitrile Oxidation. Molecules, 2013, 18, 5288-5305.	1.7	36
25	A Facile Green Synthesis and Anti-Cancer Activity of bis-Arylhydrazononitriles, Triazolo[5,1-c][1,2,4]triazine, and 1,3,4-Thiadiazolines. Heterocycles, 2013, 87, 1109.	0.4	49
26	A Convenient Ultrasound-Promoted Synthesis of Some New Thiazole Derivatives Bearing a Coumarin Nucleus and Their Cytotoxic Activity. Molecules, 2012, 17, 9335-9347.	1.7	97
27	Studies on 3-Oxoalkanenitriles: Novel Rearrangement Reactions Observed in Studies of the Chemistry of 3-Heteroaroyl-3-Oxoalkanenitriles as Novel Routes to 2-Dialkylaminopyridines. Molecules, 2012, 17, 897-909.	1.7	9
28	Studies on 2-Arylhydrazononitriles: Synthesis of 3-Aryl-2-arylhydrazopropanenitriles and Their Utility as Precursors to 2-Substituted Indoles, 2-Substituted-1,2,3-Triazoles, and 1-Substituted Pyrazolo[4,3-d]pyrimidines. Molecules, 2012, 17, 12225-12233.	1.7	6
29	Studies with 3-oxoalkanenitriles: novel rearrangements observed while exploring the utility of 3-(1-methyl-2-pyrrolyl)-3-oxopropanenitrile as a precursor to pyrrole-substituted heterocyclic compounds. Arkivoc, 2012, 2012, 1-15.	0.3	9
30	Efficient Routes to Pyrazolo[3,4-e][1,2,4]triazines and a New Ring System: [1,2,4]Triazino[5,6-d][1,2,3]triazines. Molecules, 2010, 15, 3302-3310.	1.7	11
31	Chitosan as an eco-friendly heterogeneous catalyst for Michael type addition reactions. A simple and efficient route to pyridones and phthalazines. European Journal of Chemistry, 2010, 1, 252-258.	0.3	35
32	Green One Pot Solvent-Free Synthesis of Pyrano[2,3-c]-Pyrazoles and Pyrazolo[1,5-a]Pyrimidines. Molecules, 2010, 15, 6619-6629.	1.7	78
33	Studies with enaminones and enaminonitriles: synthesis of 3-aroyl and 3-heteroaroyl-pyrazolo-[1,5-a]pyrimidines. Tetrahedron, 2009, 65, 9421-9427.	1.0	41
34	Chitosan as heterogeneous catalyst in Michael additions: The reaction of cinnamonitriles with active methyls, active methylenes and phenols. Arkivoc, 2009, 2008, 288-301.	0.3	77
35	Alkylheteroaromatic-carbonitriles as Building Blocks in Heterocyclic Synthesis: Synthesis of Ethyl 1-Substituted 5-Cyano-4-methyl-6-oxopyridine-3-carboxylates; Versatile Precursors for Polyfunctionally Substituted Isoquinolines and Pyrido[3,4-c]pyridine. Heterocycles, 2009, 78, 2067.	0.4	5
36	Grafting of vinyl acetate onto chitosan and biocidal activity of the graft copolymers. Journal of Applied Polymer Science, 2007, 103, 1651-1663.	1.3	32

3