Srilakshmi Yalavarthi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11901160/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Netting Neutrophils Induce Endothelial Damage, Infiltrate Tissues, and Expose Immunostimulatory Molecules in Systemic Lupus Erythematosus. Journal of Immunology, 2011, 187, 538-552.	0.8	1,039
2	NETs Are a Source of Citrullinated Autoantigens and Stimulate Inflammatory Responses in Rheumatoid Arthritis. Science Translational Medicine, 2013, 5, 178ra40.	12.4	1,016
3	Neutrophil extracellular traps in COVID-19. JCI Insight, 2020, 5, .	5.0	988
4	Mast Cells and Neutrophils Release IL-17 through Extracellular Trap Formation in Psoriasis. Journal of Immunology, 2011, 187, 490-500.	0.8	758
5	A Distinct Subset of Proinflammatory Neutrophils Isolated from Patients with Systemic Lupus Erythematosus Induces Vascular Damage and Synthesizes Type I IFNs. Journal of Immunology, 2010, 184, 3284-3297.	0.8	588
6	Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Science Translational Medicine, 2020, 12, .	12.4	491
7	Neutrophil extracellular traps induce endothelial dysfunction in systemic lupus erythematosus through the activation of matrix metalloproteinase-2. Annals of the Rheumatic Diseases, 2015, 74, 1417-1424.	0.9	379
8	Peptidylarginine deiminase inhibition disrupts NET formation and protects against kidney, skin and vascular disease in lupus-prone MRL/ <i>lpr</i> mice. Annals of the Rheumatic Diseases, 2015, 74, 2199-2206.	0.9	355
9	Peptidylarginine deiminase inhibition is immunomodulatory and vasculoprotective in murine lupus. Journal of Clinical Investigation, 2013, 123, 2981-2993.	8.2	347
10	Peptidylarginine Deiminase Inhibition Reduces Vascular Damage and Modulates Innate Immune Responses in Murine Models of Atherosclerosis. Circulation Research, 2014, 114, 947-956.	4.5	342
11	Release of Neutrophil Extracellular Traps by Neutrophils Stimulated With Antiphospholipid Antibodies: A Newly Identified Mechanism of Thrombosis in the Antiphospholipid Syndrome. Arthritis and Rheumatology, 2015, 67, 2990-3003.	5.6	283
12	Neutrophil extracellular traps and thrombosis in COVID-19. Journal of Thrombosis and Thrombolysis, 2021, 51, 446-453.	2.1	201
13	Plasma tissue plasminogen activator and plasminogen activator inhibitor-1 in hospitalized COVID-19 patients. Scientific Reports, 2021, 11, 1580.	3.3	175
14	In Vivo Role of Neutrophil Extracellular Traps in Antiphospholipid Antibody–Mediated Venous Thrombosis. Arthritis and Rheumatology, 2017, 69, 655-667.	5.6	166
15	Epigenome profiling reveals significant DNA demethylation of interferon signature genes in lupus neutrophils. Journal of Autoimmunity, 2015, 58, 59-66.	6.5	161
16	Adenosine receptor agonism protects against NETosis and thrombosis in antiphospholipid syndrome. Nature Communications, 2019, 10, 1916.	12.8	152
17	Neutrophil calprotectin identifies severe pulmonary disease in COVID-19. Journal of Leukocyte Biology, 2021, 109, 67-72.	3.3	107
18	Neutrophil-Mediated IFN Activation in the Bone Marrow Alters B Cell Development in Human and Murine Systemic Lupus Erythematosus. Journal of Immunology, 2014, 192, 906-918.	0.8	81

Srilakshmi Yalavarthi

#	Article	IF	CITATIONS
19	An Essential Role of Caspase 1 in the Induction of Murine Lupus and Its Associated Vascular Damage. Arthritis and Rheumatology, 2014, 66, 152-162.	5.6	78
20	DEK-targeting DNA aptamers as therapeutics for inflammatory arthritis. Nature Communications, 2017, 8, 14252.	12.8	75
21	Activated signature of antiphospholipid syndrome neutrophils reveals potential therapeutic target. JCI Insight, 2017, 2, .	5.0	75
22	ENTPD-1 disrupts inflammasome IL-1β–driven venous thrombosis. Journal of Clinical Investigation, 2019, 129, 2872-2877.	8.2	75
23	Endothelial progenitor dysfunction associates with a type I interferon signature in primary antiphospholipid syndrome. Annals of the Rheumatic Diseases, 2017, 76, 450-457.	0.9	66
24	Interleukin 17 as a novel predictor of vascular function in rheumatoid arthritis. Annals of the Rheumatic Diseases, 2011, 70, 1550-1555.	0.9	57
25	Anti–Neutrophil Extracellular Trap Antibodies and Impaired Neutrophil Extracellular Trap Degradation in Antiphospholipid Syndrome. Arthritis and Rheumatology, 2020, 72, 2130-2135.	5.6	56
26	Autoantibodies stabilize neutrophil extracellular traps in COVID-19. JCI Insight, 2021, 6, .	5.0	53
27	The Peroxisome Proliferator Activated Receptorâ€Î³ Pioglitazone Improves Vascular Function and Decreases Disease Activity in Patients With Rheumatoid Arthritis. Journal of the American Heart Association, 2013, 2, e000441.	3.7	52
28	Endothelial Cell–Activating Antibodies in COVIDâ€19. Arthritis and Rheumatology, 2022, 74, 1132-1138.	5.6	47
29	Increased Adhesive Potential of Antiphospholipid Syndrome Neutrophils Mediated by β2 Integrin Macâ€1. Arthritis and Rheumatology, 2020, 72, 114-124.	5.6	39
30	SARS-CoV-2 Spike Protein S1-Mediated Endothelial Injury and Pro-Inflammatory State Is Amplified by Dihydrotestosterone and Prevented by Mineralocorticoid Antagonism. Viruses, 2021, 13, 2209.	3.3	36
31	Vitamin D Deficiency, Interleukin 17, and Vascular Function in Rheumatoid Arthritis. Journal of Rheumatology, 2013, 40, 1529-1534.	2.0	34
32	Antimicrobial Microwebs of DNA–Histone Inspired from Neutrophil Extracellular Traps. Advanced Materials, 2019, 31, e1807436.	21.0	30
33	Genome-wide DNA methylation analysis in primary antiphospholipid syndrome neutrophils. Clinical Immunology, 2018, 196, 110-116.	3.2	26
34	Disruption of Neutrophil Extracellular Traps (NETs) Links Mechanical Strain to Post-traumatic Inflammation. Frontiers in Immunology, 2019, 10, 2148.	4.8	25
35	Endothelium-protective, histone-neutralizing properties of the polyanionic agent defibrotide. JCI Insight, 2021, 6, .	5.0	23
36	Dysfunction of endothelial progenitor cells is associated with the type I IFN pathway in patients with polymyositis and dermatomyositis. Rheumatology, 2016, 55, 1987-1992.	1.9	21

#	Article	IF	CITATIONS
37	Ectonucleotidase-Mediated Suppression of Lupus Autoimmunity and Vascular Dysfunction. Frontiers in Immunology, 2018, 9, 1322.	4.8	19
38	Antineutrophil properties of natural gingerols in models of lupus. JCI Insight, 2021, 6, .	5.0	19
39	Defibrotide Inhibits Antiphospholipid Antibody–Mediated Neutrophil Extracellular Trap Formation and Venous Thrombosis. Arthritis and Rheumatology, 2022, 74, 902-907.	5.6	19
40	Determinants of Vascular Function in Patients With Chronic Gout. Journal of Clinical Hypertension, 2011, 13, 178-188.	2.0	14
41	Extracellular Trapâ€Mimicking DNAâ€Histone Mesostructures Synergistically Activate Dendritic Cells. Advanced Healthcare Materials, 2019, 8, e1900926.	7.6	7
42	Low-density granulocytes as a potential source of neutrophil extracellular traps in antiphospholipid syndrome. Arthritis and Rheumatology, 2016, 68, n/a-n/a.	5.6	3
43	Soluble LILRA3 is aberrantly expressed in antiphospholipid syndrome (APS) and is a potential marker of thrombotic APS. Rheumatology, 2022, 61, 4962-4974.	1.9	3
44	Response to: â€~Monocyte type I interferon signature in antiphospholipid syndrome is related to pro-inflammatory monocyte subsets, hydroxychloroquine and statin use' by van den Hoogenet al. Annals of the Rheumatic Diseases, 2016, 75, e82-e82.	0.9	1
45	3005 Integrin Mac-1 Potentiates Neutrophil Adhesion and NET Release in Antiphospholipid Syndrome. Journal of Clinical and Translational Science, 2019, 3, 14-14.	0.6	Ο