
Kathryn R Wagner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11901065/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	A Combined Prospective and Retrospective Comparison of Long-Term Functional Outcomes Suggests Delayed Loss of Ambulation and Pulmonary Decline with Long-Term Eteplirsen Treatment. Journal of Neuromuscular Diseases, 2022, 9, 39-52.	1.1	24
2	Homeâ€based gait analysis as an exploratory endpoint during a multicenter phase 1 trial in limb girdle muscular dystrophy type <scp>R2</scp> and facioscapulohumeral muscular dystrophy. Muscle and Nerve, 2022, 65, 237-242.	1.0	8
3	iMyoblasts for ex vivo and in vivo investigations of human myogenesis and disease modeling. ELife, 2022, 11, .	2.8	13
4	Loss of TDP-43 function and rimmed vacuoles persist after T cell depletion in a xenograft model of sporadic inclusion body myositis. Science Translational Medicine, 2022, 14, eabi9196.	5.8	27
5	Human pluripotent stem cell-derived myogenic progenitors undergo maturation to quiescent satellite cells upon engraftment. Cell Stem Cell, 2022, 29, 610-619.e5.	5.2	10
6	Quantitative magnetic resonance imaging measures as biomarkers of disease progression in boys with Duchenne muscular dystrophy: a phase 2 trial of domagrozumab. Journal of Neurology, 2022, 269, 4421-4435.	1.8	6
7	Randomized phase 2 study of <scp>ACE</scp> â€083, a <scp>muscleâ€promoting</scp> agent, in facioscapulohumeral muscular dystrophy. Muscle and Nerve, 2022, 66, 50-62.	1.0	8
8	Quantitative Muscle Analysis in Facioscapulohumeral Muscular Dystrophy Using <scp>Wholeâ€Body Fatâ€Referenced MRI</scp> : Protocol Development, Multicenter Feasibility, and Repeatability. Muscle and Nerve, 2022, , .	1.0	1
9	A phase Ib/IIa, open″abel, multiple ascendingâ€dose trial of domagrozumab in fukutinâ€related protein limbâ€girdle muscular dystrophy. Muscle and Nerve, 2021, 64, 172-179.	1.0	5
10	CaMKII oxidation is a critical performance/disease trade-off acquired at the dawn of vertebrate evolution. Nature Communications, 2021, 12, 3175.	5.8	19
11	Human muscle stem cells are refractory to aging. Aging Cell, 2021, 20, e13411.	3.0	18
12	Open-Label Evaluation of Eteplirsen in Patients with Duchenne Muscular Dystrophy Amenable to Exon 51 Skipping: PROMOVI Trial. Journal of Neuromuscular Diseases, 2021, 8, 989-1001.	1.1	50
13	A Randomized, Double-Blind, Placebo-Controlled, Global Phase 3 Study of Edasalonexent in Pediatric Patients with Duchenne Muscular Dystrophy: Results of the PolarisDMD Trial. Journal of Neuromuscular Diseases, 2021, 8, 769-784.	1.1	13
14	Safety and disease monitoring biomarkers in Duchenne muscular dystrophy: results from a Phase II trial. Biomarkers in Medicine, 2021, 15, 1389-1396.	0.6	7
15	<i>Mss51</i> deletion increases endurance and ameliorates histopathology in the <i>mdx</i> mouse model of Duchenne muscular dystrophy. FASEB Journal, 2021, 35, e21276.	0.2	4
16	Stem cell-based therapies for Duchenne muscular dystrophy. Experimental Neurology, 2020, 323, 113086.	2.0	74
17	Diabetes, metformin and cancer risk in myotonic dystrophy type I. International Journal of Cancer, 2020, 147, 785-792.	2.3	13
18	Improving translatability of preclinical studies for neuromuscular disorders: lessons from the TREAT-NMD Advisory Committee for Therapeutics (TACT). DMM Disease Models and Mechanisms, 2020,	1.2	18

13,.

2

#	Article	IF	CITATIONS
19	The elusive promise of myostatin inhibition for muscular dystrophy. Current Opinion in Neurology, 2020, 33, 621-628.	1.8	28
20	Longitudinal functional and imaging outcome measures in FKRP limb-girdle muscular dystrophy. BMC Neurology, 2020, 20, 196.	0.8	13
21	Engineering 3D skeletal muscle primed for neuromuscular regeneration following volumetric muscle loss. Biomaterials, 2020, 255, 120154.	5.7	31
22	Randomized phase 2 trial and open-label extension of domagrozumab in Duchenne muscular dystrophy. Neuromuscular Disorders, 2020, 30, 492-502.	0.3	40
23	Applying genome-wide CRISPR-Cas9 screens for therapeutic discovery in facioscapulohumeral muscular dystrophy. Science Translational Medicine, 2020, 12, .	5.8	44
24	The care of patients with Duchenne, Becker, and other muscular dystrophies in the <code><scp>COVID</scp>â</code> $€$ 19 pandemic. Muscle and Nerve, 2020, 62, 41-45.	1.0	54
25	A decade of optimizing drug development for rare neuromuscular disorders through TACT. Nature Reviews Drug Discovery, 2020, 19, 1-2.	21.5	12
26	Duchenne muscular dystrophy hiPSC-derived myoblast drug screen identifies compounds that ameliorate disease in mdx mice. JCI Insight, 2020, 5, .	2.3	22
27	It's not all about muscle: fibroadipogenic progenitors contribute to facioscapulohumeral muscular dystrophy. Journal of Clinical Investigation, 2020, 130, 2186-2188.	3.9	3
28	AAV9 Edits Muscle Stem Cells in Normal and Dystrophic Adult Mice. Molecular Therapy, 2019, 27, 1568-1585.	3.7	54
29	Benign tumors in myotonic dystrophy type I target diseaseâ€related cancer sites. Annals of Clinical and Translational Neurology, 2019, 6, 1510-1518.	1.7	16
30	The NIH Toolbox for cognitive surveillance in Duchenne muscular dystrophy. Annals of Clinical and Translational Neurology, 2019, 6, 1696-1706.	1.7	12
31	Long-read single-molecule maps of the functional methylome. Genome Research, 2019, 29, 646-656.	2.4	48
32	Performing Human Skeletal Muscle Xenografts in Immunodeficient Mice. Journal of Visualized Experiments, 2019, , .	0.2	2
33	Identification of the hyaluronic acid pathway as a therapeutic target for facioscapulohumeral muscular dystrophy. Science Advances, 2019, 5, eaaw7099.	4.7	26
34	Mss51 deletion enhances muscle metabolism and glucose homeostasis in mice. JCI Insight, 2019, 4, .	2.3	16
35	Facioscapulohumeral Muscular Dystrophies. CONTINUUM Lifelong Learning in Neurology, 2019, 25, 1662-1681.	0.4	21
36	Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurology, The, 2018, 17, 251-267.	4.9	767

#	Article	IF	CITATIONS
37	Neurology Care, Diagnostics, and Emerging Therapies of the Patient With Duchenne Muscular Dystrophy. Pediatrics, 2018, 142, S5-S16.	1.0	16
38	Cardiac Management of the Patient With Duchenne Muscular Dystrophy. Pediatrics, 2018, 142, S72-S81.	1.0	77
39	Cancer Risk in Myotonic Dystrophy Type I: Evidence of a Role for Disease Severity. JNCI Cancer Spectrum, 2018, 2, pky052.	1.4	24
40	Adipose-derived Stem/Stromal Cells on Electrospun Fibrin Microfiber Bundles Enable Moderate Muscle Reconstruction in a Volumetric Muscle Loss Model. Cell Transplantation, 2018, 27, 1644-1656.	1.2	35
41	Biological scaffold–mediated delivery of myostatin inhibitor promotes a regenerative immune response in an animal model of Duchenne muscular dystrophy. Journal of Biological Chemistry, 2018, 293, 15594-15605.	1.6	14
42	Bone health in facioscapulohumeral muscular dystrophy: A crossâ€ s ectional study. Muscle and Nerve, 2017, 56, 1108-1113.	1.0	6
43	Left Ventricular Dysfunction and Conduction Disturbances in Patients With Myotonic Muscular Dystrophy Type I and II. JAMA Cardiology, 2017, 2, 225.	3.0	25
44	Validity of the 6 minute walk test in facioscapulohumeral muscular dystrophy. Muscle and Nerve, 2017, 55, 333-337.	1.0	37
45	Morpholino-mediated Knockdown of DUX4 Toward Facioscapulohumeral Muscular Dystrophy Therapeutics. Molecular Therapy, 2016, 24, 1405-1411.	3.7	90
46	Concordant but Varied Phenotypes among Duchenne Muscular Dystrophy Patient-Specific Myoblasts Derived using a Human iPSC-Based Model. Cell Reports, 2016, 15, 2301-2312.	2.9	141
47	Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. Science, 2016, 352, 366-370.	6.0	464
48	In Vivo Selection Yields AAV-B1 Capsid for Central Nervous System and Muscle Gene Therapy. Molecular Therapy, 2016, 24, 1247-1257.	3.7	98
49	Dystrophin-deficient dogs with reduced myostatin have unequal muscle growth and greater joint contractures. Skeletal Muscle, 2016, 6, 14.	1.9	22
50	Clinical practice considerations in facioscapulohumeral muscular dystrophy Sydney, Australia, 21 September 2015. Neuromuscular Disorders, 2016, 26, 462-471.	0.3	7
51	Mammalian Mss51 is a Skeletal Muscle-Specific Gene Modulating Cellular Metabolism. Journal of Neuromuscular Diseases, 2015, 2, 371-385.	1.1	28
52	The TREAT-NMD advisory committee for therapeutics (TACT): an innovative de-risking model to foster orphan drug development. Orphanet Journal of Rare Diseases, 2015, 10, 49.	1.2	21
53	Individual epigenetic status of the pathogenic D4Z4 macrosatellite correlates with disease in facioscapulohumeral muscular dystrophy. Clinical Epigenetics, 2015, 7, 37.	1.8	76
54	Myositis-specific autoantibodies are specific for myositis compared to genetic muscle disease. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e172.	3.1	38

#	Article	IF	CITATIONS
55	Wholeâ€body magnetic resonance imaging evaluation of facioscapulohumeral muscular dystrophy. Muscle and Nerve, 2015, 52, 512-520.	1.0	63
56	Contemporary Cardiac Issues in Duchenne Muscular Dystrophy. Circulation, 2015, 131, 1590-1598.	1.6	240
57	Genetic disruption of Smad7 impairs skeletal muscle growth and regeneration. Journal of Physiology, 2015, 593, 2479-2497.	1.3	32
58	Results of a two-year pilot study of clinical outcome measures in collagen VI- and laminin alpha2-related congenital muscular dystrophies. Neuromuscular Disorders, 2015, 25, 43-54.	0.3	30
59	Sildenafil does not improve cardiomyopathy in <scp>D</scp> uchenne/ <scp>B</scp> ecker muscular dystrophy. Annals of Neurology, 2014, 76, 541-549.	2.8	73
60	Human skeletal muscle xenograft as a new preclinical model for muscle disorders. Human Molecular Genetics, 2014, 23, 3180-3188.	1.4	48
61	Magnetic resonance imaging phenotyping of Becker muscular dystrophy. Muscle and Nerve, 2014, 50, 962-967.	1.0	28
62	Therapeutic advances in muscular dystrophy. Annals of Neurology, 2013, 74, 404-411.	2.8	70
63	Telomere position effect regulates DUX4 in human facioscapulohumeral muscular dystrophy. Nature Structural and Molecular Biology, 2013, 20, 671-678.	3.6	95
64	Fast skeletal muscle troponin activator in the dy2J muscular dystrophy model. Muscle and Nerve, 2013, 48, 279-285.	1.0	5
65	Reevaluating measures of disease progression in facioscapulohumeral muscular dystrophy. Neuromuscular Disorders, 2013, 23, 306-312.	0.3	41
66	Inhibiting myostatin reverses muscle fibrosis through apoptosis. Journal of Cell Science, 2012, 125, 3957-65.	1.2	81
67	Transcriptional profiling in facioscapulohumeral muscular dystrophy to identify candidate biomarkers. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16234-16239.	3.3	81
68	Facioscapulohumeral muscular dystrophy family studies of DUX4 expression: evidence for disease modifiers and a quantitative model of pathogenesis. Human Molecular Genetics, 2012, 21, 4419-4430.	1.4	150
69	A unique library of myogenic cells from facioscapulohumeral muscular dystrophy subjects and unaffected relatives: family, disease and cell function. European Journal of Human Genetics, 2012, 20, 404-410.	1.4	57
70	The Paradox of Muscle Hypertrophy in Muscular Dystrophy. Physical Medicine and Rehabilitation Clinics of North America, 2012, 23, 149-172.	0.7	85
71	Pathophysiology and Therapy of Cardiac Dysfunction in Duchenne Muscular Dystrophy. American Journal of Cardiovascular Drugs, 2011, 11, 287-294.	1.0	73
72	Gene expression profiling of skeletal muscles treated with a soluble activin type IIB receptor. Physiological Genomics, 2011, 43, 398-407.	1.0	44

#	Article	IF	CITATIONS
73	Regeneration versus fibrosis in skeletal muscle. Current Opinion in Rheumatology, 2011, 23, 568-573.	2.0	73
74	Clinical Applications of Myostatin Inhibitors for Neuromuscular Diseases. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 2010, 10, 204-210.	0.5	2
75	Inhibition of myostatin does not ameliorate disease features of severe spinal muscular atrophy mice. Human Molecular Genetics, 2009, 18, 3145-3152.	1.4	68
76	A soluble activin type IIB receptor improves function in a mouse model of amyotrophic lateral sclerosis. Experimental Neurology, 2009, 217, 258-268.	2.0	75
77	The state of the field: myology. Current Opinion in Neurology, 2009, 22, 498-499.	1.8	0
78	A phase I/IItrial of MYOâ€029 in adult subjects with muscular dystrophy. Annals of Neurology, 2008, 63, 561-571.	2.8	407
79	Approaching a New Age in Duchenne Muscular Dystrophy Treatment. Neurotherapeutics, 2008, 5, 583-591.	2.1	39
80	Myostatin Directly Regulates Skeletal Muscle Fibrosis. Journal of Biological Chemistry, 2008, 283, 19371-19378.	1.6	214
81	Myostatin does not regulate cardiac hypertrophy or fibrosis. Neuromuscular Disorders, 2007, 17, 290-296.	0.3	79
82	Current treatment of adult Duchenne muscular dystrophy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 229-237.	1.8	120
83	Muscle regeneration through myostatin inhibition. Current Opinion in Rheumatology, 2005, 17, 720-724.	2.0	50
84	Hydroxychloroquine causes severe vacuolar myopathy in a patient with chronic graft-versus-host disease. American Journal of Hematology, 2005, 78, 306-309.	2.0	40
85	Muscle regeneration in the prolonged absence of myostatin. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2519-2524.	3.3	181
86	Myostatin Mutation Associated with Gross Muscle Hypertrophy in a Child. New England Journal of Medicine, 2004, 350, 2682-2688.	13.9	1,238
87	Genetic diseases of muscle. Neurologic Clinics, 2002, 20, 645-678.	0.8	38
88	Loss of myostatin attenuates severity of muscular dystrophy inmdx mice. Annals of Neurology, 2002, 52, 832-836.	2.8	351
89	Gentamicin treatment of Duchenne and Becker muscular dystrophy due to nonsense mutations. Annals of Neurology, 2001, 49, 706-711.	2.8	238
90	Tyrosine and Serine Phosphorylation of Dystrophin and the 58â€kDa Protein in the Postsynaptic Membrane of <i>Torpedo</i> Electric Organ. Journal of Neurochemistry, 1994, 62, 1947-1952.	2.1	22

#	Article	IF	CITATIONS
91	The 87K postsynaptic membrane protein from torpedo is a protein-tyrosine kinase substrate homologous to dystrophin. Neuron, 1993, 10, 511-522.	3.8	152