Tsu-Wei Chou

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/11898963/tsu-wei-chou-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

108	17,039	53	112
papers	citations	h-index	g-index
112	18,261 ext. citations	7	6.88
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
108	Structural supercapacitor composites: A review. <i>Composites Science and Technology</i> , 2021 , 204, 108636	8.6	26
107	Carbon nanotube film based multifunctional composite materials: an overview. <i>Functional Composites and Structures</i> , 2020 , 2, 022002	3.5	17
106	Wet-spinning assembly and in situ electrodeposition of carbon nanotube-based composite fibers for high energy density wire-shaped asymmetric supercapacitor. <i>Journal of Colloid and Interface Science</i> , 2020 , 569, 298-306	9.3	15
105	Mechanical and electrochemical performance of hybrid laminated structural composites with carbon fiber/ solid electrolyte supercapacitor interleaves. <i>Composites Science and Technology</i> , 2020 , 196, 108234	8.6	15
104	Remotely and Sequentially Controlled Actuation of Electroactivated Carbon Nanotube/Shape Memory Polymer Composites. <i>Advanced Materials Technologies</i> , 2019 , 4, 1900600	6.8	30
103	Flexible ultra-thin Fe3O4/MnO2 core-shell decorated CNT composite with enhanced electromagnetic wave absorption performance. <i>Composites Part B: Engineering</i> , 2018 , 144, 111-117	10	54
102	1.2 Carbon Nanotube Based Fibers 2018 , 13-40		
101	Highly Sensitive Wearable Textile-Based Humidity Sensor Made of High-Strength, Single-Walled Carbon Nanotube/Poly(vinyl alcohol) Filaments. <i>ACS Applied Materials & Description of the Applied Materials & Descripti</i>	.7 9 7	141
100	Electromechanical behavior of carbon nanotube fibers under transverse compression. <i>Journal Physics D: Applied Physics</i> , 2017 , 50, 085303	3	5
99	Multifunctional continuous fibers based on aligned carbon nanotubes. <i>Journal Physics D: Applied Physics</i> , 2016 , 49, 461002	3	1
98	A continuum mechanics model of multi-buckling in graphene laubstrate systems with randomly distributed debonding. <i>International Journal of Solids and Structures</i> , 2016 , 97-98, 510-519	3.1	8
97	A durability study of carbon nanotube fiber based stretchable electronic devices under cyclic deformation. <i>Carbon</i> , 2015 , 94, 352-361	10.4	16
96	Stretchable Wire-Shaped Asymmetric Supercapacitors Based on Pristine and MnO2 Coated Carbon Nanotube Fibers. <i>ACS Nano</i> , 2015 , 9, 6088-96	16.7	258
95	High-Strength Single-Walled Carbon Nanotube/Permalloy Nanoparticle/Poly(vinyl alcohol) Multifunctional Nanocomposite Fiber. <i>ACS Nano</i> , 2015 , 9, 11414-21	16.7	34
94	Graphene-Based Fibers: A Review. <i>Advanced Materials</i> , 2015 , 27, 5113-31	24	232
93	Additive manufacturing of multi-directional preforms for composites: opportunities and challenges. <i>Materials Today</i> , 2015 , 18, 503-512	21.8	196
92	Carbon Nanotube Fiber Based Stretchable Wire-Shaped Supercapacitors. <i>Advanced Energy Materials</i> , 2014 , 4, 1300759	21.8	271

(2011-2014)

91	Synthesis and failure behavior of super-aligned carbon nanotube film wrapped graphene fibers. <i>Carbon</i> , 2014 , 72, 250-256	10.4	18
90	Carbon nanotube fibers spun from a sizing material. <i>Applied Physics Letters</i> , 2014 , 105, 261903	3.4	3
89	Stress relaxation in carbon nanotube-based fibers for load-bearing applications. <i>Carbon</i> , 2013 , 52, 347-3	8 5 5.4	21
88	Microstructural evolution of carbon nanotube fibers: deformation and strength mechanism. <i>Nanoscale</i> , 2013 , 5, 2002-8	7.7	37
87	Carbon Nanotube Fiber Based Stretchable Conductor. Advanced Functional Materials, 2013, 23, 789-793	15.6	88
86	Mechanical Behavior and Structural Evolution of Carbon Nanotube Films and Fibers Under Tension: A Coarse-Grained Molecular Dynamics Study. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2013 , 80,	2.7	13
85	Characterization of carbon nanotube fiber compressive properties using tensile recoil measurement. <i>ACS Nano</i> , 2012 , 6, 4288-97	16.7	34
84	Carbon nanotube fibers for advanced composites. <i>Materials Today</i> , 2012 , 15, 302-310	21.8	87
83	Sensing of damage and healing in three-dimensional braided composites with vascular channels. <i>Composites Science and Technology</i> , 2012 , 72, 1618-1626	8.6	43
82	Electromechanical response and failure behaviour of aerogel-spun carbon nanotube fibres under tensile loading. <i>Journal of Materials Chemistry</i> , 2012 , 22, 6792		37
81	State of the art of carbon nanotube fibers: opportunities and challenges. <i>Advanced Materials</i> , 2012 , 24, 1805-33	24	403
80	The effective interfacial shear strength of carbon nanotube fibers in an epoxy matrix characterized by a microdroplet test. <i>Carbon</i> , 2012 , 50, 1271-1279	10.4	104
79	The use of Taguchi optimization in determining optimum electrophoretic conditions for the deposition of carbon nanofiber on carbon fibers for use in carbon/epoxy composites. <i>Carbon</i> , 2012 , 50, 2853-2859	10.4	21
78	Processing and characterization of multi-scale hybrid composites reinforced with nanoscale carbon reinforcements and carbon fibers. <i>Composites Part A: Applied Science and Manufacturing</i> , 2011 , 42, 337-	3 ⁸ 14	65
77	Damage mode characterization of mechanically fastened composite joints using carbon nanotube networks. <i>Composites Part A: Applied Science and Manufacturing</i> , 2011 , 42, 2003-2009	8.4	19
76	Radial deformation and its related energy variations of single-walled carbon nanotubes. <i>Physical Review B</i> , 2011 , 83,	3.3	32
75	Formicary-like carbon nanotube/copper hybrid nanostructures for carbon fiber-reinforced composites by electrophoretic deposition. <i>Journal of Materials Science</i> , 2011 , 46, 2359-2364	4.3	22
74	Damage sensing of adhesively-bonded hybrid composite/steel joints using carbon nanotubes. <i>Composites Science and Technology</i> , 2011 , 71, 1183-1189	8.6	85

73	Mechanical and electrical response of carbon nanotube-based fabric composites to Hopkinson bar loading. <i>Composites Science and Technology</i> , 2011 , 71, 616-621	8.6	27
72	The properties of dry-spun carbon nanotube fibers and their interfacial shear strength in an epoxy composite. <i>Carbon</i> , 2011 , 49, 1752-1757	10.4	66
71	In situ sensing of impact damage in epoxy/glass fiber composites using percolating carbon nanotube networks. <i>Carbon</i> , 2011 , 49, 3382-3385	10.4	116
70	Analysis of the entanglements in carbon nanotube fibers using a self-folded nanotube model. <i>Journal of the Mechanics and Physics of Solids</i> , 2011 , 59, 511-524	5	39
69	A three-dimensional model of electrical percolation thresholds in carbon nanotube-based composites. <i>Applied Physics Letters</i> , 2010 , 96, 223106	3.4	70
68	Damage monitoring in fiber-reinforced composites under fatigue loading using carbon nanotube networks. <i>Philosophical Magazine</i> , 2010 , 90, 4085-4099	1.6	55
67	An assessment of the science and technology of carbon nanotube-based fibers and composites. <i>Composites Science and Technology</i> , 2010 , 70, 1-19	8.6	462
66	Highly conductive polymer composites based on controlled agglomeration of carbon nanotubes. <i>Carbon</i> , 2010 , 48, 2649-2651	10.4	62
65	A comparative study of damage sensing in fiber composites using uniformly and non-uniformly dispersed carbon nanotubes. <i>Carbon</i> , 2010 , 48, 3788-3794	10.4	61
64	Carbon-Nanotube-Based Composites and Damage Sensing 2010 , 159-281		2
64	Carbon-Nanotube-Based Composites and Damage Sensing 2010 , 159-281 Sensing of Damage Mechanisms in Fiber-Reinforced Composites under Cyclic Loading using Carbon Nanotubes. <i>Advanced Functional Materials</i> , 2009 , 19, 123-130	15.6	189
Í	Sensing of Damage Mechanisms in Fiber-Reinforced Composites under Cyclic Loading using Carbon	15.6	
63	Sensing of Damage Mechanisms in Fiber-Reinforced Composites under Cyclic Loading using Carbon Nanotubes. <i>Advanced Functional Materials</i> , 2009 , 19, 123-130 Processing and electrical properties of carbon nanotube/vinyl ester nanocomposites. <i>Composites</i>		189
63	Sensing of Damage Mechanisms in Fiber-Reinforced Composites under Cyclic Loading using Carbon Nanotubes. <i>Advanced Functional Materials</i> , 2009 , 19, 123-130 Processing and electrical properties of carbon nanotube/vinyl ester nanocomposites. <i>Composites Science and Technology</i> , 2009 , 69, 801-804 Coupled carbon nanotube network and acoustic emission monitoring for sensing of damage	8.6	189
63 62 61	Sensing of Damage Mechanisms in Fiber-Reinforced Composites under Cyclic Loading using Carbon Nanotubes. <i>Advanced Functional Materials</i> , 2009 , 19, 123-130 Processing and electrical properties of carbon nanotube/vinyl ester nanocomposites. <i>Composites Science and Technology</i> , 2009 , 69, 801-804 Coupled carbon nanotube network and acoustic emission monitoring for sensing of damage development in composites. <i>Carbon</i> , 2009 , 47, 1381-1388 PRECISE DETERMINATION OF BACKBONE STRUCTURE AND CONDUCTIVITY OF 3D PERCOLATION NETWORKS BY THE DIRECT ELECTRIFYING ALGORITHM. <i>International Journal of Modern Physics C</i> ,	8.6	189 107 103
63 62 61 60	Sensing of Damage Mechanisms in Fiber-Reinforced Composites under Cyclic Loading using Carbon Nanotubes. <i>Advanced Functional Materials</i> , 2009 , 19, 123-130 Processing and electrical properties of carbon nanotube/vinyl ester nanocomposites. <i>Composites Science and Technology</i> , 2009 , 69, 801-804 Coupled carbon nanotube network and acoustic emission monitoring for sensing of damage development in composites. <i>Carbon</i> , 2009 , 47, 1381-1388 PRECISE DETERMINATION OF BACKBONE STRUCTURE AND CONDUCTIVITY OF 3D PERCOLATION NETWORKS BY THE DIRECT ELECTRIFYING ALGORITHM. <i>International Journal of Modern Physics C</i> , 2009 , 20, 423-433 Failure of carbon nanotube/polymer composites and the effect of nanotube waviness. <i>Composites</i>	10.4	189 107 103 11
63 62 61 60 59	Sensing of Damage Mechanisms in Fiber-Reinforced Composites under Cyclic Loading using Carbon Nanotubes. <i>Advanced Functional Materials</i> , 2009 , 19, 123-130 Processing and electrical properties of carbon nanotube/vinyl ester nanocomposites. <i>Composites Science and Technology</i> , 2009 , 69, 801-804 Coupled carbon nanotube network and acoustic emission monitoring for sensing of damage development in composites. <i>Carbon</i> , 2009 , 47, 1381-1388 PRECISE DETERMINATION OF BACKBONE STRUCTURE AND CONDUCTIVITY OF 3D PERCOLATION NETWORKS BY THE DIRECT ELECTRIFYING ALGORITHM. <i>International Journal of Modern Physics C</i> , 2009 , 20, 423-433 Failure of carbon nanotube/polymer composites and the effect of nanotube waviness. <i>Composites Part A: Applied Science and Manufacturing</i> , 2009 , 40, 1580-1586 Real-time in situ sensing of damage evolution in advanced fiber composites using carbon nanotube	8.6 10.4 1.1 8.4	189 107 103 11 39

(2005-2008)

55	Carbon nanotube-based health monitoring of mechanically fastened composite joints. <i>Composites Science and Technology</i> , 2008 , 68, 2557-2561	8.6	77
54	Modeling of damage sensing in fiber composites using carbon nanotube networks. <i>Composites Science and Technology</i> , 2008 , 68, 3373-3379	8.6	147
53	Theoretical studies on the charge-induced failure of single-walled carbon nanotubes. <i>Carbon</i> , 2007 , 45, 922-930	10.4	30
52	Multifunctional composites with self-sensing capabilities: carbon nanotube-based networks 2007 ,		2
51	Continuum percolation of nanocomposites with fillers of arbitrary shapes. <i>Applied Physics Letters</i> , 2007 , 90, 174108	3.4	71
50	Functionalized Single-Walled Carbon Nanotubes for Carbon Fiber E poxy Composites[] <i>Journal of Physical Chemistry C</i> , 2007 , 111, 17865-17871	3.8	126
49	A direct electrifying algorithm for backbone identification. <i>Journal of Physics A: Mathematical and Theoretical</i> , 2007 , 40, 14679-14686	2	36
48	Dominant role of tunneling resistance in the electrical conductivity of carbon nanotubeBased composites. <i>Applied Physics Letters</i> , 2007 , 91, 223114	3.4	518
47	Charge-induced strains in single-walled carbon nanotubes. <i>Nanotechnology</i> , 2006 , 17, 4624-8	3.4	27
46	Modeling of Carbon Nanotubes and Their Composites 2006 , 55-65		5
45	Electrostatic charge distribution on single-walled carbon nanotubes. <i>Applied Physics Letters</i> , 2006 , 89, 063103	3.4	24
44	Elastic wave velocities in single-walled carbon nanotubes. <i>Physical Review B</i> , 2006 , 73,	3.3	34
43	Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. <i>Carbon</i> , 2006 , 44, 3022-3029	10.4	493
42	Multiscale modeling of compressive behavior of carbon nanotube/polymer composites. <i>Composites Science and Technology</i> , 2006 , 66, 2409-2414	8.6	141
41	Atomistic Modeling of Carbon Nanotube-based Mechanical Sensors. <i>Journal of Intelligent Material Systems and Structures</i> , 2006 , 17, 247-254	2.3	29
40	Fabrication and characterization of reaction bonded silicon carbide/carbon nanotube composites. Journal Physics D: Applied Physics, 2005 , 38, 3962-3965	3	57
39	Quantized molecular structural mechanics modeling for studying the specific heat of single-walled carbon nanotubes. <i>Physical Review B</i> , 2005 , 71,	3.3	23
38	Modeling of heat capacities of multi-walled carbon nanotubes by molecular structural mechanics. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing , 2005, 409, 140-144	5.3	25

37	Nanocomposites in context. Composites Science and Technology, 2005, 65, 491-516	8.6	1273
36	Axial and radial thermal expansions of single-walled carbon nanotubes. <i>Physical Review B</i> , 2005 , 71,	3.3	53
35	Modeling of carbon nanotube clamping in tensile tests. <i>Composites Science and Technology</i> , 2005 , 65, 2407-2415	8.6	19
34	Modeling of elastic buckling of carbon nanotubes by molecular structural mechanics approach. <i>Mechanics of Materials</i> , 2004 , 36, 1047-1055	3.3	138
33	Nanotube buckling in aligned multi-wall carbon nanotube composites. <i>Carbon</i> , 2004 , 42, 3015-3018	10.4	51
32	Elastic properties of single-walled carbon nanotubes in transverse directions. <i>Physical Review B</i> , 2004 , 69,	3.3	87
31	Strain and pressure sensing using single-walled carbon nanotubes. <i>Nanotechnology</i> , 2004 , 15, 1493-149	963.4	106
30	Mass detection using carbon nanotube-based nanomechanical resonators. <i>Applied Physics Letters</i> , 2004 , 84, 5246-5248	3.4	177
29	Vibrational behaviors of multiwalled-carbon-nanotube-based nanomechanical resonators. <i>Applied Physics Letters</i> , 2004 , 84, 121-123	3.4	212
28	A structural mechanics approach for the analysis of carbon nanotubes. <i>International Journal of Solids and Structures</i> , 2003 , 40, 2487-2499	3.1	1050
27	On the elastic properties of carbon nanotube-based composites: modelling and characterization. <i>Journal Physics D: Applied Physics</i> , 2003 , 36, 573-582	3	477
26	Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators. <i>Physical Review B</i> , 2003 , 68,	3.3	238
25	Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization. <i>Journal Physics D: Applied Physics</i> , 2002 , 35, L77-L80	3	519
24	Advances in the science and technology of carbon nanotubes and their composites: a review. <i>Composites Science and Technology</i> , 2001 , 61, 1899-1912	8.6	3903
23	Some recent advances in the fabrication and design of three-dimensional textile preforms: a review. <i>Composites Science and Technology</i> , 2000 , 60, 33-47	8.6	218
22	Mechanics of Textile Composites 2000 , 719-761		10
21	Braided structures 1999 , 217-240		7
20	Process-microstructure relationships of 2-step and 4-step braided composites. <i>Composites Science and Technology</i> , 1996 , 56, 235-251	8.6	51

19	Elastic Response and Effect of Transverse Cracking in Woven Fabric Brittle Matrix Composites. Journal of the American Ceramic Society, 1995 , 78, 783-792	3.8	19
18	Microstructural Design of Advanced Multi-Step Three-Dimensional Braided Preforms. <i>Journal of Composite Materials</i> , 1994 , 28, 1180-1201	2.7	17
17	Numerical Analysis for Design of Composite Specimens for Through-the-Thickness Tensile Measurements. <i>Journal of Composite Materials</i> , 1994 , 28, 1032-1056	2.7	
16	Damage Development and Moduli Reductions in Nicalon Calcium Aluminosilicate Composites under Static Fatigue and Cyclic Fatigue. <i>Journal of the American Ceramic Society</i> , 1993 , 76, 1720-1728	3.8	37
15	Microstructural Design of Fiber Composites 1992,		248
14	Analytical Characterization of Two-Step Braided Composites. <i>Journal of Composite Materials</i> , 1991 , 25, 1599-1618	2.7	42
13	Mode I Delamination of a Three-Dimensional Fabric Composite. <i>Journal of Composite Materials</i> , 1990 , 24, 497-518	2.7	33
12	Modeling of 3-D Angle-Interlock Textile Structural Composites. <i>Journal of Composite Materials</i> , 1989 , 23, 890-911	2.7	85
11	Simplified Greens functions for mode I and II cracks. <i>International Journal of Fracture</i> , 1989 , 39, 301-321	2.3	1
10	Effect of Fiber Waviness on the Nonlinear Elastic Behavior of Flexible Composites. <i>Journal of Composite Materials</i> , 1988 , 22, 1004-1025	2.7	51
9	Performance Optimization of Woven Fabric Composites for Printed Circuit Boards. <i>Materials Research Society Symposia Proceedings</i> , 1986 , 72, 163		
8	Structure-performance maps of polymeric, metal, and ceramic matrix composites. <i>Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science</i> , 1986 , 17, 1547-1559		30
7	Fiber Inclination Model of Three-Dimensional Textile Structural Composites. <i>Journal of Composite Materials</i> , 1986 , 20, 472-484	2.7	254
6	Experimental Confirmation of the Theory of Elastic Moduli of Fabric Composites. <i>Journal of Composite Materials</i> , 1985 , 19, 443-458	2.7	87
5	In-Plane Thermal Expansion and Thermal Bending Coefficients of Fabric Composites. <i>Journal of Composite Materials</i> , 1983 , 17, 92-104	2.7	117
4	Nonlinear Behavior of Woven Fabric Composites. <i>Journal of Composite Materials</i> , 1983 , 17, 399-413	2.7	122
3	One-dimensional micromechanical analysis of woven fabric composites. AIAA Journal, 1983, 21, 1714-17	72 11	229
2	Elastic Behavior of Woven Hybrid Composites. <i>Journal of Composite Materials</i> , 1982 , 16, 2-19	2.7	228

Microcracking and Elastic Moduli Reductions in Unidirectional Nicalon-CAS Composite Under Cyclic Fatigue Loading. *Ceramic Engineering and Science Proceedings*,881-888

0.1 10