
Michael S Selig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11898326/publications.pdf Version: 2024-02-01

8

#	Article	IF	CITATIONS
1	Aero-structural design and optimization of 50 MW wind turbine with over 250-m blades. Wind Engineering, 2022, 46, 273-295.	1.9	17
2	Active rotor coning for a 25 MW downwind offshore wind turbine. Journal of Physics: Conference Series, 2022, 2265, 032022.	0.4	1
3	Control co-design of 13 MW downwind two-bladed rotors to achieve 25% reduction in levelized cost of wind energy. Annual Reviews in Control, 2021, 51, 331-343.	7.9	36
4	Downwind coning concept rotor for a 25 MW offshore wind turbine. Renewable Energy, 2020, 156, 314-327.	8.9	28
5	Design and Testing of a Scaled Demonstrator Turbine at the National Wind Technology Center. , 2019, ,		12
6	System-level design studies for large rotors. Wind Energy Science, 2019, 4, 595-618.	3.3	24
7	Design Methodology for Aerodynamically Scaling of a General Aviation Aircraft Airfoil. , 2018, , .		3
8	Aerodynamic Design of the 13.2 MW SUMR-13i Wind Turbine Rotor. , 2018, , .		8
9	Design of Bird-Like Airfoils. , 2018, , .		14
10	Correction: Aerodynamic Design of the 13.2 MW SUMR-13i Wind Turbine Rotor. , 2018, , .		3
11	Design of Airfoils to Mitigate Wake Bursting. , 2017, , .		1
12	Downwind preâ€aligned rotors for extremeâ€scale wind turbines. Wind Energy, 2017, 20, 1241-1259.	4.2	41
13	Design Methodology for a Dynamically-Scaled General Aviation Aircraft. , 2017, , .		8
14	Subscale Testing of Horizontal-Axis Wind Turbines. , 2017, , .		3
15	Development of an Aerodynamic Analysis Methodology for Segmented Ultralight Morphing Rotors. , 2017, , .		5
16	Modeling Micro Air Vehicle Aerodynamics in Unsteady High Angle-of-Attack Flight. Journal of Aircraft, 2017, 54, 1064-1075.	2.4	13
17	Multielement Airfoils for Wind Turbines. , 2017, , 203-219.		0

18 Simulation of Damage Progression on Wind Turbine Blades Subject to Particle Erosion. , 2016, , .

MICHAEL S SELIG

#	Article	IF	CITATIONS
19	Simulation of Damage for Wind Turbine Blades Due to Airborne Particles. Wind Engineering, 2015, 39, 399-418.	1.9	19
20	A Damage Assessment for Wind Turbine Blades from Heavy Atmospheric Particles. , 2015, , .		8
21	Optimization of Wind Turbine Airfoils Subject to Particle Erosion. , 2015, , .		6
22	Real-Time Flight Simulation of Highly Maneuverable Unmanned Aerial Vehicles. Journal of Aircraft, 2014, 51, 1705-1725.	2.4	43
23	A Simulation of Operational Damage for Wind Turbine Blades. , 2014, , .		10
24	Drag Reduction Using Riblet Film Applied to Airfoils for Wind Turbines. Journal of Solar Energy Engineering, Transactions of the ASME, 2014, 136, .	1.8	47
25	A low-power architecture for high frequency sensor acquisition in many-DOF UAVs. , 2014, , .		24
26	Effects of leading edge erosion on wind turbine blade performance. Wind Energy, 2014, 17, 1531-1542.	4.2	200
27	Reynolds Number Effects on the Performance of Small-Scale Propellers. , 2014, , .		84
28	Design of a 2-D Fairing for a Wind Turbine Tower. , 2013, , .		6
29	Determining Aerodynamic Characteristics of a Micro Air Vehicle Using Motion Tracking. Journal of Aircraft, 2013, 50, 1481-1490.	2.4	8
30	Dynamic Soaring of Sailplanes over Open Fields. Journal of Aircraft, 2013, 50, 1420-1430.	2.4	39
31	Effects of Leading-Edge Protection Tape on Wind Turbine Blade Performance. Wind Engineering, 2012, 36, 525-534.	1.9	34
32	Hybrid Inverse Design Method for Nonlifting Bodies in Incompressible Flow. Journal of Aircraft, 2006, 43, 1770-1781.	2.4	4
33	Wind Tunnel Aerodynamic Tests of Six Airfoils for Use on Small Wind Turbines. Journal of Solar Energy Engineering, Transactions of the ASME, 2004, 126, 986-1001.	1.8	132
34	Design of Low Reynolds Number Airfoils with Trips. Journal of Aircraft, 2003, 40, 768-775.	2.4	56
35	Hybrid Inverse Airfoil Design Method for Complex Three-Dimensional Lifting Surfaces. Journal of Aircraft, 2002, 39, 409-417.	2.4	16
36	Low-Speed Natural-Laminar-Flow Airfoils: Case Study in Inverse Airfoil Design. Journal of Aircraft, 2001, 38, 57-63.	2.4	51

MICHAEL S SELIG

#	Article	IF	CITATIONS
37	Hybrid Airfoil Design Procedure Validation for Full-Scale Ice Accretion Simulation. Journal of Aircraft, 1999, 36, 769-776.	2.4	26
38	Aerodynamic effects of leading-edge tape on aerofoils at low Reynolds numbers. Wind Energy, 1999, 2, 125-136.	4.2	35
39	Hybrid Airfoil Design Method to Simulate Full-Scale Ice Accretion Throughout a Given a Range. Journal of Aircraft, 1998, 35, 233-239.	2.4	17
40	Multipoint Inverse Method for Multielement Airfoil Design. Journal of Aircraft, 1998, 35, 398-404.	2.4	19
41	Design of Subscale Airfoils with Full-Scale Leading Edges for Ice Accretion Testing. Journal of Aircraft, 1997, 34, 94-100.	2.4	24
42	Freestream Velocity Corrections for Two-Dimensional Testing with Splitter Plates. AIAA Journal, 1997, 35, 1195-1200.	2.6	13
43	High-Lift Low Reynolds Number Airfoil Design. Journal of Aircraft, 1997, 34, 72-79.	2.4	169
44	Spanwise variations in profile drag for airfoils at low Reynolds numbers. Journal of Aircraft, 1996, 33, 699-707.	2.4	34
45	Multipoint inverse airfoil design method for slot-suction airfoils. Journal of Aircraft, 1996, 33, 708-715.	2.4	14
46	Natural-laminar-flow airfoil for general-aviation applications. Journal of Aircraft, 1995, 32, 710-715.	2.4	47
47	Multipoint inverse design of an infinite cascade of airfoils. AIAA Journal, 1994, 32, 774-782.	2.6	19
48	Generalized multipoint inverse airfoil design. AIAA Journal, 1992, 30, 2618-2625.	2.6	84
49	Simplified linear stability transition prediction method for separated boundary layers. AIAA Journal, 1992, 30, 1953-1961.	2.6	34
50	Multipoint inverse airfoil design method based on conformal mapping. AIAA Journal, 1992, 30, 1162-1170.	2.6	98