Axel H E Mller

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/11898004/axel-h-e-muller-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

22,461 80 138 309 h-index g-index citations papers 6.9 7.08 311 23,575 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
309	Hyperbranched and Hyperstar Polybutadienes via Anionic Self-Condensing Vinyl Copolymerization. <i>Macromolecules</i> , 2021 , 54, 5774-5783	5.5	3
308	The effect of THF and the chelating modifier DTHFP on the copolymerisation of #myrcene and styrene: kinetics, microstructures, morphologies, and mechanical properties. <i>Polymer Chemistry</i> , 2021 , 12, 4632-4642	4.9	2
307	Tetrahydrofuran: More than a Randomizerlin the Living Anionic Copolymerization of Styrene and Isoprene: Kinetics, Microstructures, Morphologies, and Mechanical Properties. <i>Macromolecules</i> , 2020 , 53, 5512-5527	5.5	13
306	Tapered Multiblock Copolymers Based on Farnesene and Styrene: Impact of Biobased Polydiene Architectures on Material Properties. <i>Macromolecules</i> , 2020 , 53, 10397-10408	5.5	19
305	Towards bio-based tapered block copolymers: the behaviour of myrcene in the statistical anionic copolymerisation. <i>Polymer Chemistry</i> , 2019 , 10, 1213-1220	4.9	35
304	Tapered Multiblock Copolymers Based on Isoprene and 4-Methylstyrene: Influence of the Tapered Interface on the Self-Assembly and Thermomechanical Properties. <i>Macromolecules</i> , 2019 , 52, 1577-158	8 ^{5.5}	33
303	Kinetics of Anionic Living Copolymerization of Isoprene and Styrene Using in Situ NIR Spectroscopy: Temperature Effects on Monomer Sequence and Morphology. <i>Macromolecules</i> , 2019 , 52, 9299-9310	5.5	15
302	One-Step Block Copolymer Synthesis versus Sequential Monomer Addition: A Fundamental Study Reveals That One Methyl Group Makes a Difference. <i>Macromolecules</i> , 2018 , 51, 3527-3537	5.5	44
301	Isoprene/Styrene Tapered Multiblock Copolymers with up to Ten Blocks: Synthesis, Phase Behavior, Order, and Mechanical Properties. <i>Macromolecules</i> , 2018 , 51, 10246-10258	5.5	37
300	Compaction and Transmembrane Delivery of pDNA: Differences between l-PEI and Two Types of Amphiphilic Block Copolymers. <i>Biomacromolecules</i> , 2017 , 18, 808-818	6.9	17
299	Systematic Study of a Library of PDMAEMA-Based, Superparamagnetic Nano-Stars for the Transfection of CHO-K1 Cells. <i>Polymers</i> , 2017 , 9,	4.5	5
298	Interfacial Assembly and Jamming Behavior of Polymeric Janus Particles at Liquid Interfaces. <i>ACS Applied Materials & District Material</i>	9.5	42
297	Controlling Multicompartment Morphologies Using Solvent Conditions and Chemical Modification. <i>ACS Macro Letters</i> , 2016 , 5, 1044-1048	6.6	28
296	A block copolymer-templated construction approach for the creation of nano-patterned polyelectrolyte multilayers and nanoscale objects. <i>Soft Matter</i> , 2016 , 12, 8098-8103	3.6	10
295	Living Polymer Chains with Predictable Molecular Weight and Dispersity via Carbanionic Polymerization in Continuous Flow: Mixing Rate as a Key Parameter. <i>Macromolecules</i> , 2016 , 49, 5043-50	0 <i>5</i> 0 ⁵	46
294	Polymer Foams Made of Immiscible Polymer Blends Compatibilized by Janus Particles E ffect of Compatibilization on Foam Morphology . <i>Advanced Engineering Materials</i> , 2016 , 18, 814-825	3.5	27
293	Influence of Polyplex Formation on the Performance of Star-Shaped Polycationic Transfection Agents for Mammalian Cells. <i>Polymers</i> , 2016 , 8,	4.5	16

(2014-2016)

292	Promoter, transgene, and cell line effects in the transfection of mammalian cells using PDMAEMA-based nano-stars. <i>Biotechnology Reports (Amsterdam, Netherlands)</i> , 2016 , 11, 53-61	5.3	12
291	Rational design of ABC triblock terpolymer solution nanostructures with controlled patch morphology. <i>Nature Communications</i> , 2016 , 7, 12097	17.4	116
29 0	Periodic nanoscale patterning of polyelectrolytes over square centimeter areas using block copolymer templates. <i>Soft Matter</i> , 2016 , 12, 4595-602	3.6	14
289	Splitting of Surface-Immobilized Multicompartment Micelles into Clusters upon Charge Inversion. <i>ACS Nano</i> , 2016 , 10, 5180-8	16.7	11
288	Self-assembly concepts for multicompartment nanostructures. <i>Nanoscale</i> , 2015 , 7, 11841-76	7.7	244
287	Using Janus Nanoparticles To Trap Polymer Blend Morphologies during Solvent-Evaporation-Induced Demixing. <i>Macromolecules</i> , 2015 , 48, 4220-4227	5.5	61
286	Efficient size control of copper nanoparticles generated in irradiated aqueous solutions of star-shaped polyelectrolyte containers. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 11490-8	3.6	18
285	Core-Shell Cylindrical Polymer Brushes with New Properties: A Mini-Review. <i>ACS Symposium Series</i> , 2015 , 127-133	0.4	1
284	Structural Study of Star Polyelectrolytes and Their Porous Multilayer Assembly in Solution. <i>Springer Proceedings in Physics</i> , 2015 , 299-315	0.2	
283	Stimuli-responsive spherical brushes based on D-galactopyranose and 2-(dimethylamino)ethyl methacrylate. <i>Macromolecular Bioscience</i> , 2014 , 14, 81-91	5.5	19
282	Multicompartment micelles with adjustable poly(ethylene glycol) shell for efficient in vivo photodynamic therapy. <i>ACS Nano</i> , 2014 , 8, 1161-72	16.7	70
281	Control of morphology and corona composition in aggregates of mixtures of PS-b-PAA and PS-b-P4VP diblock copolymers: effects of solvent, water content, and mixture composition. <i>Langmuir</i> , 2014 , 30, 13152-63	4	24
280	Nanoporous Sheets and Cylinders via Bulk Templating of Triblock Terpolymer/Homopolymer Blends. <i>Macromolecules</i> , 2014 , 47, 6289-6301	5.5	17
279	Living Anionic Polymerization in Continuous Flow: Facilitated Synthesis of High-Molecular Weight Poly(2-vinylpyridine) and Polystyrene. <i>Organic Process Research and Development</i> , 2014 , 18, 1408-1412	3.9	20
278	The impact of Janus nanoparticles on the compatibilization of immiscible polymer blends under technologically relevant conditions. <i>ACS Nano</i> , 2014 , 8, 10048-56	16.7	108
277	Co-Assembly of A B Diblock Copolymers with B?-type Nanoparticles in Thin Films: Effect of Copolymer Composition and Nanoparticle Shape. <i>Macromolecules</i> , 2014 , 47, 3022-3032	5.5	29
276	Self-Assembly of Amphiphilic Triblock Terpolymers Mediated by Multifunctional Organic Acids: Vesicles, Toroids, and (Undulated) Ribbons. <i>Macromolecules</i> , 2014 , 47, 1672-1683	5.5	27
275	Hidden structural features of multicompartment micelles revealed by cryogenic transmission electron tomography. <i>ACS Nano</i> , 2014 , 8, 11330-40	16.7	47

274	Thermo-Induced Limited Aggregation of Responsive Star Polyelectrolytes. <i>Macromolecules</i> , 2014 , 47, 2112-2121	5.5	45
273	Control of corona composition and morphology in aggregates of mixtures of PS-b-PAA and PS-b-P4VP diblock copolymers: effects of pH and block length. <i>Langmuir</i> , 2014 , 30, 5031-40	4	30
272	Revival of the R-group approach: a "CTA-shuttled" grafting from approach for well-defined cylindrical polymer brushes via RAFT polymerization. <i>Macromolecular Rapid Communications</i> , 2014 , 35, 234-241	4.8	35
271	Multiresponsive Microcapsules Based on Multilayer Assembly of Star Polyelectrolytes. <i>Macromolecules</i> , 2014 , 47, 7858-7868	5.5	38
270	Rod-like nano-light harvester. <i>Macromolecular Rapid Communications</i> , 2014 , 35, 52-5	4.8	9
269	Towards completely miscible PMMA nanocomposites reinforced by shear-stiff, nano-mica. <i>Journal of Colloid and Interface Science</i> , 2014 , 425, 143-51	9.3	14
268	PDMAEMA-grafted core-shell-corona particles for nonviral gene delivery and magnetic cell separation. <i>Biomacromolecules</i> , 2013 , 14, 3081-90	6.9	73
267	Hierarchical Structuring in Block Copolymer Nanocomposites through Two Phase-Separation Processes Operating on Different Time Scales. <i>Advanced Functional Materials</i> , 2013 , 23, 4215-4226	15.6	25
266	Structural analysis of colloidal MnO x composites. <i>Colloid and Polymer Science</i> , 2013 , 291, 469-481	2.4	4
265	Fine-Tuning the Structure of Stimuli-Responsive Polymer Films by Hydrostatic Pressure and Temperature. <i>Macromolecules</i> , 2013 , 46, 6541-6547	5.5	37
264	Interpolyelectrolyte complexes with a polysaccharide corona from dextran-block-PDMAEMA diblock copolymers. <i>Polymer Chemistry</i> , 2013 , 4, 2278	4.9	16
263	Guided hierarchical co-assembly of soft patchy nanoparticles. <i>Nature</i> , 2013 , 503, 247-51	50.4	490
262	Advanced Functional Structures Based on Interpolyelectrolyte Complexes. <i>Advances in Polymer Science</i> , 2013 , 173-225	1.3	38
261	Poly(ethylene oxide)-block-poly(n-butyl acrylate)-block-poly(acrylic acid) triblock terpolymers with highly asymmetric hydrophilic blocks: synthesis and aqueous solution properties. <i>Soft Matter</i> , 2013 , 9, 8745	3.6	5
260	Magnetoceramic nanocrystals from the bulk pyrolysis of novel hyperbranched polyferrocenyl(boro)carbosilanes. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 1507	7.1	30
259	Nondestructive light-initiated tuning of layer-by-layer microcapsule permeability. <i>ACS Nano</i> , 2013 , 7, 598-613	16.7	61
258	Influence of Janus particle shape on their interfacial behavior at liquid-liquid interfaces. <i>Langmuir</i> , 2013 , 29, 1388-94	4	125
257	Janus-Micellen als effektive suprakolloidale Dispersionsmittel fl Kohlenstoff-Nanorliren. Angewandte Chemie, 2013 , 125, 3688-3693	3.6	4

(2012-2013)

256	Co-assemblies of micelle-forming diblock copolymers and enzymes on graphite substrate for an improved design of biosensor systems. <i>Soft Matter</i> , 2013 , 9, 2858	3.6	25
255	Counterion-mediated hierarchical self-assembly of an ABC miktoarm star terpolymer. <i>ACS Nano</i> , 2013 , 7, 4030-41	16.7	76
254	Janus micelles as effective supracolloidal dispersants for carbon nanotubes. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 3602-6	16.4	50
253	Janus particles: synthesis, self-assembly, physical properties, and applications. <i>Chemical Reviews</i> , 2013 , 113, 5194-261	68.1	1304
252	Crystal structure and chemical composition of biomimetic calcium phosphate nanofibers. <i>RSC Advances</i> , 2013 , 3, 11301	3.7	16
251	Magnetic CoreBhell Nanoparticles as Carriers for Olefin Dimerization Catalysts. <i>European Journal of Inorganic Chemistry</i> , 2013 , 2013, 2146-2153	2.3	9
250	Reversible swelling transitions in stimuli-responsive layer-by-layer films containing block copolymer micelles. <i>Chemical Science</i> , 2013 , 4, 325-334	9.4	42
249	Interpolyelectrolyte complexes based on hyaluronic acid-block-poly(ethylene glycol) and poly-L-lysine. <i>Soft Matter</i> , 2013 , 9, 4297	3.6	22
248	Polymere Multitalente: sternffimige Polykationen. <i>Nachrichten Aus Der Chemie</i> , 2013 , 61, 1008-1012	0.1	1
247	Rare-Earth Metal Cations Incorporated Silica Hybrid Nanoparticles Templated by Cylindrical Polymer Brushes. <i>Chemistry of Materials</i> , 2013 , 25, 4585-4594	9.6	45
246	Surface interactions surpass carbon-carbon bond: understanding and control of the scission behavior of core-shell polymer brushes on surfaces. <i>ACS Nano</i> , 2013 , 7, 2284-91	16.7	20
245	Micellar Interpolyelectrolyte Complexes with a Compartmentalized Shell. <i>Macromolecules</i> , 2013 , 46, 6466-6474	5.5	19
244	Superparamagnetic and fluorescent thermo-responsive core-shell-corona hybrid nanogels with a protective silica shell. <i>Journal of Colloid and Interface Science</i> , 2012 , 374, 45-53	9.3	47
243	Cavitation engineered 3D sponge networks and their application in active surface construction. <i>Advanced Materials</i> , 2012 , 24, 985-9	24	71
242	Dual-responsive magnetic core-shell nanoparticles for nonviral gene delivery and cell separation. <i>Biomacromolecules</i> , 2012 , 13, 857-66	6.9	100
241	Facile, solution-based synthesis of soft, nanoscale Janus particles with tunable Janus balance. <i>Journal of the American Chemical Society</i> , 2012 , 134, 13850-60	16.4	225
240	Micellar interpolyelectrolyte complexes. <i>Chemical Society Reviews</i> , 2012 , 41, 6888-901	58.5	194
239	Synthesis of polysaccharide-b-PEG block copolymers by oxime click. <i>Chemical Communications</i> , 2012 , 48, 3781-3	5.8	56

238	Tetragonally Perforated Lamellae of Polybutadiene-block-poly(tert-butyl methacrylate) (BVT) Triblock Terpolymers in the Bulk: Preparation, Cross-Linking, and Dissolution. <i>Macromolecules</i> , 2012 , 45, 7956-79	5.5 9 63	16
237	A Modular Route for the Synthesis of ABC Miktoarm Star Terpolymers via a New Alkyne-Substituted Diphenylethylene Derivative. <i>Macromolecules</i> , 2012 , 45, 8300-8309	5.5	45
236	Smart hydrogels based on responsive star-block copolymers. <i>Soft Matter</i> , 2012 , 8, 9436	3.6	28
235	Stimuli-responsive micellar interpolyelectrolyte complexes Leontrol of micelle dynamics via core crosslinking. <i>Soft Matter</i> , 2012 , 8, 10167	3.6	15
234	Template-Directed Synthesis of Silica Nanowires and Nanotubes from Cylindrical CoreBhell Polymer Brushes. <i>Chemistry of Materials</i> , 2012 , 24, 1802-1810	9.6	96
233	Chapter 1:Soft, Nanoscale Janus Particles by Macromolecular Engineering and Molecular Self-assembly. <i>RSC Smart Materials</i> , 2012 , 1-28	0.6	2
232	Nanoparticulate nonviral agent for the effective delivery of pDNA and siRNA to differentiated cells and primary human T lymphocytes. <i>Biomacromolecules</i> , 2012 , 13, 3463-74	6.9	59
231	Template-Directed Mild Synthesis of Anatase Hybrid Nanotubes within Cylindrical CoreBhellCorona Polymer Brushes. <i>Macromolecules</i> , 2012 , 45, 6981-6988	5.5	64
230	Precise hierarchical self-assembly of multicompartment micelles. <i>Nature Communications</i> , 2012 , 3, 710	17.4	458
229	Tailored star-shaped statistical teroligomers viaATRP for lithographic applications. <i>Journal of Materials Chemistry</i> , 2012 , 22, 73-79		12
229		3.1	12
	Materials Chemistry, 2012 , 22, 73-79 Preface DAn energetic life between soft matter and hard X-rays. Zeitschrift Fur Physikalische	3.1	12
228	Materials Chemistry, 2012, 22, 73-79 Preface Dan energetic life between soft matter and hard X-rays. Zeitschrift Fur Physikalische Chemie, 2012, 226, 543-545 A facile polymer templating route toward high-aspect-ratio crystalline titania nanostructures. Small		30
228	Materials Chemistry, 2012, 22, 73-79 Preface Dan energetic life between soft matter and hard X-rays. Zeitschrift Fur Physikalische Chemie, 2012, 226, 543-545 A facile polymer templating route toward high-aspect-ratio crystalline titania nanostructures. Small , 2012, 8, 2636-40 Direct synthesis of inverse hexagonally ordered diblock copolymer/polyoxometalate	11	30
228 227 226	Preface IAn energetic life between soft matter and hard X-rays. Zeitschrift Fur Physikalische Chemie, 2012, 226, 543-545 A facile polymer templating route toward high-aspect-ratio crystalline titania nanostructures. Small , 2012, 8, 2636-40 Direct synthesis of inverse hexagonally ordered diblock copolymer/polyoxometalate nanocomposite films. Journal of the American Chemical Society, 2012, 134, 12685-92 Packing of Cylindrical Keggin-Type Polyoxometalate Hybrid Micelles as a Function of Aspect Ratio.	11 16.4	30
228 227 226 225	Preface IAn energetic life between soft matter and hard X-rays. Zeitschrift Fur Physikalische Chemie, 2012, 226, 543-545 A facile polymer templating route toward high-aspect-ratio crystalline titania nanostructures. Small, 2012, 8, 2636-40 Direct synthesis of inverse hexagonally ordered diblock copolymer/polyoxometalate nanocomposite films. Journal of the American Chemical Society, 2012, 134, 12685-92 Packing of Cylindrical Keggin-Type Polyoxometalate Hybrid Micelles as a Function of Aspect Ratio. Zeitschrift Fur Physikalische Chemie, 2012, 226, 815-826 Double Responsive Hydrogels based on Tertiary Amine Methacrylate Star Block Copolymers.	11 16.4 3.1	30 49
228 227 226 225	Preface IAn energetic life between soft matter and hard X-rays. Zeitschrift Fur Physikalische Chemie, 2012, 226, 543-545 A facile polymer templating route toward high-aspect-ratio crystalline titania nanostructures. Small , 2012, 8, 2636-40 Direct synthesis of inverse hexagonally ordered diblock copolymer/polyoxometalate nanocomposite films. Journal of the American Chemical Society, 2012, 134, 12685-92 Packing of Cylindrical Keggin-Type Polyoxometalate Hybrid Micelles as a Function of Aspect Ratio. Zeitschrift Fur Physikalische Chemie, 2012, 226, 815-826 Double Responsive Hydrogels based on Tertiary Amine Methacrylate Star Block Copolymers. Zeitschrift Fur Physikalische Chemie, 2012, 226, 695-709	11 16.4 3.1	30 49

(2010-2011)

220	pH-controlled exponential and linear growing modes of layer-by-layer assemblies of star polyelectrolytes. <i>Journal of the American Chemical Society</i> , 2011 , 133, 9592-606	16.4	78	
219	Janus cylinders at liquid-liquid interfaces. <i>Langmuir</i> , 2011 , 27, 9807-14	4	109	
218	Linear Versus (Hyper)branched Polymers 2011 , 973-1005		3	
217	Magnetic and fluorescent glycopolymer hybrid nanoparticles for intranuclear optical imaging. <i>Biomacromolecules</i> , 2011 , 12, 3805-11	6.9	72	
216	Double-layered micellar interpolyelectrolyte complexesflow many shells to a core?. <i>Soft Matter</i> , 2011 , 7, 1714-1725	3.6	29	
215	Janus Triad: Three Types of Nonspherical, Nanoscale Janus Particles from One Single Triblock Terpolymer. <i>Macromolecules</i> , 2011 , 44, 9221-9229	5.5	46	
214	Influence of polymer architecture and molecular weight of poly(2-(dimethylamino)ethyl methacrylate) polycations on transfection efficiency and cell viability in gene delivery. <i>Biomacromolecules</i> , 2011 , 12, 4247-55	6.9	146	
213	DNA melting temperature assay for assessing the stability of DNA polyplexes intended for nonviral gene delivery. <i>Langmuir</i> , 2011 , 27, 12042-51	4	22	
212	One-dimensional magnetic inorganic-organic hybrid nanomaterials. <i>Chemical Society Reviews</i> , 2011 , 40, 640-55	58.5	173	
211	Self-assembly of poly(ionic liquid)s: polymerization, mesostructure formation, and directional alignment in one step. <i>Journal of the American Chemical Society</i> , 2011 , 133, 17556-9	16.4	139	
210	Self-Assembled Structures of Amphiphilic Ionic Block Copolymers: Theory, Self-Consistent Field Modeling and Experiment. <i>Advances in Polymer Science</i> , 2011 , 57-129	1.3	68	
209	Glycopolymer-grafted polystyrene nanospheres. <i>Macromolecular Bioscience</i> , 2011 , 11, 199-210	5.5	31	
208	Hybrid Capsules via Self-Assembly of Thermoresponsive and Interfacially Active Bionanoparticle P olymer Conjugates. <i>Advanced Functional Materials</i> , 2011 , 21, 2470-2476	15.6	67	
207	Dual stimuli-responsive multicompartment micelles from triblock terpolymers with tunable hydrophilicity. <i>Soft Matter</i> , 2011 , 7, 8880	3.6	74	
206	Core-crosslinked compartmentalized cylinders. <i>Nanoscale</i> , 2011 , 3, 288-97	7.7	37	
205	Surface immobilized block copolymer micelles with switchable accessibility of hydrophobic pockets. <i>Soft Matter</i> , 2011 , 7, 11144	3.6	21	
204	Interpolyelectrolyte Complexes Based on Polyionic Species of Branched Topology. <i>Advances in Polymer Science</i> , 2010 , 131-161	1.3	34	
203	Comparison of star and linear ArF resists 2010 ,		3	

202	Going beyond the surface: revealing complex block copolymer morphologies with 3D scanning force microscopy. <i>ACS Nano</i> , 2010 , 4, 5609-16	16.7	13
201	A 🖸 lick Chemistry 🖪 Approach to Linear and Star-Shaped Telechelic POSS-Containing Hybrid Polymers. <i>Macromolecules</i> , 2010 , 43, 3148-3152	5.5	116
200	Water-soluble organo-silica hybrid nanotubes templated by cylindrical polymer brushes. <i>Journal of the American Chemical Society</i> , 2010 , 132, 16587-92	16.4	126
199	Stimuli-Responsive Organosilica Hybrid Nanowires Decorated with Metal Nanoparticles. <i>Chemistry of Materials</i> , 2010 , 22, 2626-2634	9.6	62
198	Manipulating the morphologies of cylindrical polyelectrolyte brushes by forming interpolyelectrolyte complexes with oppositely charged linear polyelectrolytes: an AFM study. <i>Langmuir</i> , 2010 , 26, 6919-26	4	35
197	Interpolyelectrolyte complexation in chloroform. <i>Langmuir</i> , 2010 , 26, 7813-8	4	13
196	Mixed, multicompartment, or Janus micelles? A systematic study of thermoresponsive bis-hydrophilic block terpolymers. <i>Langmuir</i> , 2010 , 26, 12237-46	4	76
195	Clickable, biocompatible, and fluorescent hybrid nanoparticles for intracellular delivery and optical imaging. <i>Biomacromolecules</i> , 2010 , 11, 390-6	6.9	45
194	Calcium phosphate growth beneath a polycationic monolayer at the air-water interface: effects of oscillating surface pressure on mineralization. <i>Nanoscale</i> , 2010 , 2, 2440-6	7.7	19
193	Conformations and Solution Properties of Star-Branched Polyelectrolytes. <i>Advances in Polymer Science</i> , 2010 , 1-55	1.3	21
192	Amphiphilic Diblock Copolymers with a Moderately Hydrophobic Block: Toward Dynamic Micelles. <i>Macromolecules</i> , 2010 , 43, 2667-2671	5.5	61
191	Hybrids of Magnetic Nanoparticles with Double-Hydrophilic Core/Shell Cylindrical Polymer Brushes and Their Alignment in a Magnetic Field. <i>Advanced Functional Materials</i> , 2010 , 20, 4182-4189	15.6	61
190	Block Copolymer Micellar Nanoreactors for the Directed Synthesis of ZnO Nanoparticles. <i>Macromolecular Rapid Communications</i> , 2010 , 31, 729-34	4.8	23
189	Direct Synthesis of Poly(potassium 3-sulfopropyl methacrylate) Cylindrical Polymer Brushes via ATRP Using a Supramolecular Complex With Crown Ether. <i>Macromolecular Rapid Communications</i> , 2010 , 31, 1462-6	4.8	13
188	Biomimetic mussel adhesive inspired clickable anchors applied to the functionalization of fe(3) o(4) nanoparticles. <i>Macromolecular Rapid Communications</i> , 2010 , 31, 1608-15	4.8	56
187	Calcium phosphate mineralization beneath a polycationic monolayer at the air-water interface. <i>Macromolecular Bioscience</i> , 2010 , 10, 1084-92	5.5	33
186	Template-directed synthesis of hybrid nanowires and nanorods. <i>Physica Status Solidi (B): Basic Research</i> , 2010 , 247, 2436-2450	1.3	10
185	Polyelectrolyte Stars and Cylindrical Brushes. <i>Advances in Polymer Science</i> , 2009 , 1-38	1.3	8

(2009-2009)

Self-Supporting, Double Stimuli-Responsive Porous Membranes From Polystyrene-block-poly(N,N-dimethylaminoethyl methacrylate) Diblock Copolymers. <i>Advanced Functional Materials</i> , 2009 , 19, 1040-1045	15.6	148
New Block Copolymers with Poly(N,N-dimethylaminoethyl methacrylate) as a Double Stimuli-Responsive Block. <i>Macromolecular Chemistry and Physics</i> , 2009 , 210, 256-262	2.6	44
Facile Access to Hydroxy-Functional Core-Shell Microspheres via Grafting of Ethylene Oxide by Anionic Ring-Opening Polymerization. <i>Macromolecular Rapid Communications</i> , 2009 , 30, 1009-14	4.8	17
Undulated multicompartment cylinders by the controlled and directed stacking of polymer micelles with a compartmentalized corona. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 2877-80	16.4	111
Interaction of cylindrical polymer brushes in dilute and semi-dilute solution. <i>Colloid and Polymer Science</i> , 2009 , 287, 129-138	2.4	29
New Amphiphilic Nanostructures Based on Block Terpolymers Made By Anionic Polymerization. <i>NATO Science for Peace and Security Series A: Chemistry and Biology</i> , 2009 , 167-186	0.1	3
Synthesis via RAFT Polymerization of Tadpole-Shaped Organic/Inorganic Hybrid Poly(acrylic acid) Containing Polyhedral Oligomeric Silsesquioxane (POSS) and Their Self-assembly in Water. <i>Macromolecules</i> , 2009 , 42, 2563-2569	5.5	160
Self-assembly of Janus cylinders into hierarchical superstructures. <i>Journal of the American Chemical Society</i> , 2009 , 131, 4720-8	16.4	160
Structure-tunable bidirectional hybrid nanowires via multicompartment cylinders. <i>Nano Letters</i> , 2009 , 9, 2026-30	11.5	42
Multicompartment Core Micelles of Triblock Terpolymers in Organic Media. <i>Macromolecules</i> , 2009 , 42, 3540-3548	5.5	97
Formation of hydrophobic bridges between multicompartment micelles of miktoarm star terpolymers in water. <i>Chemical Communications</i> , 2009 , 1127-9	5.8	52
Switching the morphologies of cylindrical polycation brushes by ionic and supramolecular inclusion complexes. <i>Journal of the American Chemical Society</i> , 2009 , 131, 1640-1	16.4	56
Smart organic-inorganic nanohybrids based on amphiphilic block copolymer micelles and functional silsesquioxane nanoparticles. <i>Langmuir</i> , 2009 , 25, 3407-17	4	15
Template-Directed Synthesis of Hybrid Titania Nanowires within CoreBhell Bishydrophilic Cylindrical Polymer Brushes. <i>Chemistry of Materials</i> , 2009 , 21, 4146-4154	9.6	50
Self-assembly of asymmetric poly(ethylene oxide)-block-poly(n-butyl acrylate) diblock copolymers in aqueous media to unexpected morphologies. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 4218-25	3.4	56
Interpolyelectrolyte complexes of dynamic multicompartment micelles. ACS Nano, 2009, 3, 2095-102	16.7	95
Dynamic multicompartment-core micelles in aqueous media. <i>Langmuir</i> , 2009 , 25, 10962-9	4	70
Influence of counterion valency on the conformational behavior of cylindrical polyelectrolyte brushes. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 5104-10	3.4	32
	Polystyrene-block-poly(N.N-dimethylaminoethyl methacrylate) Diblock Copolymers. <i>Advanced Functional Materials</i> , 2009, 19, 1040-1045 New Block Copolymers with Poly(N.N-dimethylaminoethyl methacrylate) as a Double Stimuli-Responsive Block. <i>Macromolecular Chemistry and Physics</i> , 2009, 210, 256-262 Facile Access to Hydroxy-Functional Core-Shell Microspheres via Grafting of Ethylene Oxide by Anionic Ring-Opening Polymerization. <i>Macromolecular Rapid Communications</i> , 2009, 30, 1009-14 Undulated multicompartment cylinders by the controlled and directed stacking of polymer micelles with a compartmentalized corona. <i>Angewandte Chemie - International Edition</i> , 2009, 48, 2877-80 Interaction of cylindrical polymer brushes in dilute and semi-dilute solution. <i>Colloid and Polymer Science</i> , 2009, 287, 129-138 New Amphiphilic Nanostructures Based on Block Terpolymers Made By Anionic Polymerization. <i>NATO Science for Peace and Security Series A: Chemistry and Biology</i> , 2009, 167-186 Synthesis via RAFT Polymerization of Tadpole-Shaped Organic/Inorganic Hybrid Poly(acrylic acid) Containing Polyhedral Oligomeric Silsesquioxane (POSS) and Their Self-assembly in Water. <i>Macromolecules</i> , 2009, 42, 2563-2569 Self-assembly of Janus cylinders into hierarchical superstructures. <i>Journal of the American Chemical Society</i> , 2009, 131, 4720-8 Structure-tunable bidirectional hybrid nanowires via multicompartment cylinders. <i>Nano Letters</i> , 2009, 9, 2026-30 Multicompartment Core Micelles of Triblock Terpolymers in Organic Media. <i>Macromolecules</i> , 2009, 42, 3540-3548 Formation of hydrophobic bridges between multicompartment micelles of miktoarm star terpolymers in water. <i>Chemical Communications</i> , 2009, 1127-9 Switching the morphologies of cylindrical polycation brushes by ionic and supramolecular inclusion complexes. <i>Journal of the American Chemical Society</i> , 2009, 131, 1640-1 Smart organic-inorganic nanohybrids based on amphiphilic block copolymer micelles and functional silsesquioxane nanoparticles. <i>Langmuir</i> , 2009, 25, 3407-1	Polystyrene-block-poly(N,N-dimethylaminoethyl methacrylate) Diblock Copolymers. Advanced functional Materials, 2009, 19, 1040-1045 New Block Copolymers with Poly(N,N-dimethylaminoethyl methacrylate) as a Double Stimuli-Responsive Block. Macromolecular Chemistry and Physics, 2009, 210, 256-262 Facile Access to Hydroxy-Functional Core-Shell Microspheres via Grafting of Ethylene Oxide by Anionic Ring-Opening Polymerization. Macromolecular Rapid Communications, 2009, 30, 1009-14 Undulated multicompartment cylinders by the controlled and directed stacking of polymer micelles with a compartmentalized corona. Angewandte Chemie - International Edition, 2009, 48, 2877-80 Interaction of cylindrical polymer brushes in dilute and semi-dilute solution. Colloid and Polymer Science, 2009, 287, 129-138 New Amphiphilic Nanostructures Based on Block Terpolymers Made By Anionic Polymerization. NATO Science for Peace and Security Series A: Chemistry and Biology, 2009, 167-186 Synthesis via RAFT Polymerization of Tadpole-Shaped Organic/Inorganic Hybrid Polylacrylic acid) Containing Polyhedral Oligomeric Silesequioxane (POSS) and Their Self-assembly in Water. Macromolecules, 2009, 42, 2563-2569 Self-assembly of Janus cylinders into hierarchical superstructures. Journal of the American Chemical Society, 2009, 131, 4720-8 Structure-tunable bidirectional hybrid nanowires via multicompartment cylinders. Nano Letters, 2009, 9, 2026-30 Multicompartment Core Micelles of Triblock Terpolymers in Organic Media. Macromolecules, 2009, 42, 3540-3548 Formation of hydrophobic bridges between multicompartment micelles of miktoarm star terpolymers in water. Chemical Communications, 2009, 1127-9 Switching the morphologies of cylindrical polycation brushes by ionic and supramolecular inclusion complexes. Journal of the American Chemical Society, 2009, 131, 1640-1 Smart organic-inorganic nanohybrids based on amphiphilic block copolymer micelles and functional silesesquioxane nanoparticles. Langmuir, 2009, 25, 3407-17 Template-Directed Synt

166	Surface Modification of Poly(divinylbenzene) Microspheres via ThiolEne Chemistry and AlkyneAzide Click Reactions. <i>Macromolecules</i> , 2009 , 42, 3707-3714	5.5	182
165	Nano-patterned structures in cylindrical polyelectrolyte brushes assembled with oppositely charged polyions. <i>Soft Matter</i> , 2009 , 5, 4938	3.6	25
164	Alignment of tellurium nanorods via a magnetization-alignment-demagnetization ("MAD") process assisted by an external magnetic field. <i>ACS Nano</i> , 2009 , 3, 1441-50	16.7	39
163	Foaming of Microstructured and Nanostructured Polymer Blends. <i>Advances in Polymer Science</i> , 2009 , 199-252	1.3	21
162	Double stimuli-responsive ultrafiltration membranes from polystyrene-block-poly(N,N-dimethylaminoethyl methacrylate) diblock copolymers. <i>ACS Applied Materials & Amp; Interfaces</i> , 2009 , 1, 1492-503	9.5	81
161	Manipulating cylindrical polyelectrolyte brushes on the nanoscale by counterions: collapse transition to helical structures. <i>Soft Matter</i> , 2009 , 5, 379-384	3.6	64
160	Structures of amphiphilic Janus discs in aqueous media. <i>Soft Matter</i> , 2009 , 5, 385-390	3.6	66
159	Controlling the Fast ATRP of N-Isopropylacrylamide in Water. ACS Symposium Series, 2009, 127-137	0.4	25
158	Polyelectrolyte Stars and Cylindrical Brushes Made by ATRP: New Building Blocks in Nanotechnology. <i>NATO Science for Peace and Security Series A: Chemistry and Biology</i> , 2009 , 17-36	0.1	1
157	Water-soluble organo-silica hybrid nanowires. <i>Nature Materials</i> , 2008 , 7, 718-22	27	209
156	Core-crosslinked block copolymer nanorods as templates for grafting [SiMo(12)O(40)](4-) Keggin ions. <i>Chemical Communications</i> , 2008 , 489-91	5.8	56
155	Engineering nanostructured polymer blends with controlled nanoparticle location using Janus particles. <i>ACS Nano</i> , 2008 , 2, 1167-78	16.7	258
154	Pearl-Necklace Structures in CoreBhell Molecular Brushes: Experiments, Monte Carlo Simulations, and Self-Consistent Field Modeling. <i>Macromolecules</i> , 2008 , 41, 4020-4028	5.5	44
153	Wormlike morphology formation and stabilization of "pluronic p123" micelles by solubilization of pentaerythritol tetraacrylate. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 8879-83	3.4	25
152	Calcium phosphate mineralization beneath monolayers of poly(n-butylacrylate)-block-poly(acrylic		28
	acid) block copolymers. <i>Faraday Discussions</i> , 2008 , 139, 179-97; discussion 213-28, 419-20	3.6	20
151	acid) block copolymers. <i>Faraday Discussions</i> , 2008 , 139, 179-97; discussion 213-28, 419-20 Water-soluble interpolyelectrolyte complexes of polyisobutylene-block-poly(methacrylic acid) micelles: formation and properties. <i>Langmuir</i> , 2008 , 24, 1769-77	3.6	65
151 150	Water-soluble interpolyelectrolyte complexes of polyisobutylene-block-poly(methacrylic acid)		

(2007-2008)

148	Bis-Hydrophilic Block Terpolymers via RAFT Polymerization: Toward Dynamic Micelles with Tunable Corona Properties. <i>Macromolecules</i> , 2008 , 41, 8608-8619	5.5	40
147	Multiple Morphologies, Phase Transitions, and Cross-Linking of Crew-Cut Aggregates of Polybutadiene-block-poly(2-vinylpyridine) Diblock Copolymers. <i>Macromolecules</i> , 2008 , 41, 3254-3260	5.5	90
146	Synthesis of dense poly(acrylic acid) brushes and their interaction with amine-functional silsesquioxane nanoparticles. <i>Langmuir</i> , 2008 , 24, 9421-9	4	26
145	Emulsion polymerization using Janus particles as stabilizers. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 711-4	16.4	260
144	Janus particles. Soft Matter, 2008, 4, 663-668	3.6	722
143	Structure of Micelles of Poly(n-butyl acrylate)-block-poly(acrylic acid) Diblock Copolymers in Aqueous Solution. <i>Macromolecules</i> , 2007 , 40, 4351-4362	5.5	110
142	One-Pot Synthesis of Polyglycidol-Containing Block Copolymers with Alkyllithium Initiators Using the Phosphazene Base t-BuP4. <i>Macromolecules</i> , 2007 , 40, 5241-5244	5.5	45
141	Blends of Poly(methacrylate) Block Copolymers with Photoaddressable Segments. <i>Macromolecules</i> , 2007 , 40, 2100-2108	5.5	57
140	Polyisobutylene-block-poly(methacrylic acid) diblock copolymers: self-assembly in aqueous media. <i>Langmuir</i> , 2007 , 23, 12864-74	4	64
139	Nanoblossoms: light-induced conformational changes of cationic polyelectrolyte stars in the presence of multivalent counterions. <i>Nano Letters</i> , 2007 , 7, 167-71	11.5	86
138	Synthesis and Characterization of Star-Shaped Poly(N,N-dimethylaminoethyl methacrylate) and Its Quaternized Ammonium Salts. <i>Macromolecules</i> , 2007 , 40, 5689-5697	5.5	115
137	Thermoresponsive Glycopolymers via Controlled Radical Polymerization. <i>Macromolecular Chemistry and Physics</i> , 2007 , 208, 1035-1049	2.6	50
136	Double-Grafted Cylindrical Brushes: Synthesis and Characterization of Poly(lauryl methacrylate) Brushes. <i>Macromolecular Chemistry and Physics</i> , 2007 , 208, 1666-1675	2.6	48
135	Towards nanoporous membranes based on ABC triblock terpolymers. <i>Small</i> , 2007 , 3, 1056-63	11	45
134	Synthesis of Poly(n-butyl acrylate)-block-poly(acrylic acid) Diblock Copolymers by ATRP and Their Micellization in Water. <i>Macromolecules</i> , 2007 , 40, 4338-4350	5.5	153
133	Janus discs. Journal of the American Chemical Society, 2007 , 129, 6187-98	16.4	277
132	Tuning the thermoresponsiveness of weak polyelectrolytes by pH and light: lower and upper critical-solution temperature of poly(N,N-dimethylaminoethyl methacrylate). <i>Journal of the American Chemical Society</i> , 2007 , 129, 14538-9	16.4	224
131	Tuning the Thermoresponsive Properties of Weak Polyelectrolytes: Aqueous Solutions of Star-Shaped and Linear Poly(N,N-dimethylaminoethyl Methacrylate). <i>Macromolecules</i> , 2007 , 40, 8361-8.	3&&	318

130	Linear and Hyperbranched Glycopolymer-Functionalized Carbon Nanotubes: Synthesis, Kinetics, and Characterization. <i>Macromolecules</i> , 2007 , 40, 1803-1815	5.5	132
129	Immobilized hyperbranched glycoacrylate films as bioactive supports. <i>Macromolecular Bioscience</i> , 2006 , 6, 658-66	5.5	37
128	RAFT Polymerization of N-Isopropylacrylamide and Acrylic Acid under #rradiation in Aqueous Media. <i>Macromolecular Rapid Communications</i> , 2006 , 27, 821-828	4.8	91
127	Anionic polymerization of N,N-dimethylacrylamide with thienyllithium and synthesis of block co-polymers of isobutylene and N,N-dimethylacrylamide by site transformation of chain ends. <i>Designed Monomers and Polymers</i> , 2006 , 9, 63-79	3.1	9
126	Kinetic Investigations of Self-Condensing Group Transfer Polymerization. <i>Macromolecular Symposia</i> , 2006 , 240, 83-92	0.8	6
125	Controlling the aggregation of conjugates of streptavidin with smart block copolymers prepared via the RAFT copolymerization technique. <i>Biomacromolecules</i> , 2006 , 7, 2736-41	6.9	127
124	Stabilization of polymeric micelles with a mixed poly(ethylene oxide)/poly(2-hydroxyethyl methacrylate) shell by formation of poly(pentaerythritol tetraacrylate) nanonetworks within the micelles. <i>Journal of Materials Chemistry</i> , 2006 , 16, 2192-2199		37
123	Anionic Polymerization and Block Copolymerization of N,N-Diethylacrylamide in the Presence of Triethylaluminum. Kinetic Investigation Using In-Line FT-NIR Spectroscopy. <i>Macromolecules</i> , 2006 , 39, 2773-2787	5.5	15
122	Quantum-Chemical Study of the Effect of Triethylaluminum on the Chain-End Structure and Tacticity of Poly(N,N-dimethylacrylamide) with Lithium Counterion in THF. <i>Macromolecules</i> , 2006 , 39, 4228-4234	5.5	9
121	Rheology and phase behavior of poly(n-butyl acrylate)-block-poly(acrylic acid) in aqueous solution. <i>Langmuir</i> , 2006 , 22, 4766-76	4	38
120	Synthesis and Characterization of Surface-Grafted Hyperbranched Glycomethacrylates. <i>Macromolecules</i> , 2006 , 39, 2743-2750	5.5	74
119	Synthesis and Characterization of Methacrylate-Type Glycopolymers with Branched Architectures. <i>ACS Symposium Series</i> , 2006 , 214-233	0.4	
118	Synthesis and Characterization of Methacrylate-Type Hyperbranched Glycopolymers via Self-Condensing Atom Transfer Radical Copolymerization. <i>Macromolecules</i> , 2005 , 38, 3108-3119	5.5	104
117	Synthesis and Characterization of Comb-Shaped Polymers by SEC with On-Line Light Scattering and Viscometry Detection. <i>Macromolecules</i> , 2005 , 38, 3949-3960	5.5	58
116	Micellar Aggregates of Amylose-block-polystyrene Rod©oil Block Copolymers in Water and THF. <i>Macromolecules</i> , 2005 , 38, 873-879	5.5	84
115	Synthesis of Hyperbranched Glycopolymers via Self-Condensing Atom Transfer Radical Copolymerization of a Sugar-Carrying Acrylate. <i>Macromolecules</i> , 2005 , 38, 9-18	5.5	116
114	Investigation of the Telomerization Kinetics of N-Isopropylacrylamide Using 3-Mercaptopropionic Hydrazide as Chain Transfer Agent. <i>Macromolecules</i> , 2005 , 38, 3630-3637	5.5	20
113	Molecular Sugar Sticks: Cylindrical Glycopolymer Brushes. <i>Macromolecules</i> , 2005 , 38, 7926-7934	5.5	80

112	Synthesis and Characterization of Glycomethacrylate Hybrid Stars from Silsesquioxane Nanoparticles. <i>Macromolecules</i> , 2005 , 38, 10631-10642	5.5	71
111	Surface-Grafted Hyperbranched Polymers 2005 , 167-186		
110	Synthesis, Characterization and Behavior in Aqueous Solution of Star-Shaped Poly(acrylic acid). <i>Macromolecular Chemistry and Physics</i> , 2005 , 206, 1813-1825	2.6	173
109	Thermo- and pH-Responsive Micelles of Poly(acrylic acid)-block-Poly(N,N-diethylacrylamide). <i>Macromolecular Rapid Communications</i> , 2005 , 26, 558-563	4.8	158
108	A Commentary on Bynthesis of polymers with hydroxyl end groups by atom transfer radical polymerization[by V. Coessens, K. Matyjaszewski (Macromol. Rapid Commun. 1999, 20, 127[134]). <i>Macromolecular Rapid Communications</i> , 2005 , 26, 1893-1902	4.8	3
107	Cylindrical polymer brushes. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 3461-3481	2.5	542
106	A New Double-Responsive Block Copolymer Synthesized via RAFT Polymerization: Poly(N-isopropylacrylamide)-block-poly(acrylic acid). <i>Macromolecules</i> , 2004 , 37, 7861-7866	5.5	505
105	Fluorescence Correlation Spectroscopy of Single Dye-Labeled Polymers in Organic Solvents. <i>Macromolecules</i> , 2004 , 37, 1917-1920	5.5	56
104	Reversible meso-scale smart polymerprotein particles of controlled sizes. <i>Bioconjugate Chemistry</i> , 2004 , 15, 747-53	6.3	98
103	Kinetic Investigation of Self-Condensing Group Transfer Polymerization. <i>Macromolecules</i> , 2004 , 37, 754	8 ₅ 75558	3 30
102	Synthesis of Highly Branched Cationic Polyelectrolytes via Self-Condensing Atom Transfer Radical Copolymerization with 2-(Diethylamino)ethyl Methacrylate. <i>Macromolecules</i> , 2004 , 37, 2054-2066	5.5	85
101	Silsesquioxane-Based Nanoparticles Formed via Hydrolytic Condensation of Organotriethoxysilane Containing Hydroxy Groups. <i>Macromolecules</i> , 2004 , 37, 5228-5238	5.5	91
100	Synthesis of Amphiphilic Graft Copolymers of n-Butyl Acrylate and Acrylic Acid by Atom Transfer Radical Copolymerization of Macromonomers. <i>Macromolecules</i> , 2004 , 37, 7484-7490	5.5	54
99	OrganicIhorganic Nanoassembly Based on Complexation of Cationic Silica Nanoparticles and Weak Anionic Polyelectrolytes in Aqueous and Alcohol Media. <i>Langmuir</i> , 2004 , 20, 1934-1944	4	33
98	Template-Controlled Synthesis of Wire-Like Cadmium Sulfide Nanoparticle Assemblies within CoreBhell Cylindrical Polymer Brushes. <i>Chemistry of Materials</i> , 2004 , 16, 537-543	9.6	219
97	New Polyelectrolyte Architectures. <i>Advances in Polymer Science</i> , 2004 , 1-42	1.3	39
96	RAFT Polymers: Novel Precursors for Polymer P rotein Conjugates. <i>ACS Symposium Series</i> , 2003 , 603-618	0.4	58
	Anionic Polymerization of Ethylene Oxide in the Presence of the Phosphazene Base ButP4 [Kinetic		

94	Polyisobutylene Stars and Polyisobutylene-block-Poly(tert-Butyl Methacrylate) Block Copolymers by Site Transformation of Thiophene End-Capped Polyisobutylene Chain Ends. <i>Macromolecules</i> , 2003 , 36, 6985-6994	5.5	53
93	Intelligent colloidal hybrids via reversible pH-induced complexation of polyelectrolyte and silica nanoparticles. <i>Journal of the American Chemical Society</i> , 2003 , 125, 3712-3	16.4	93
92	Quantum-Chemical Study of Structure and Activity of Chain Ends in Metal-Free Anionic Polymerization of Methacrylates. <i>Macromolecules</i> , 2003 , 36, 3374-3379	5.5	19
91	Amphiphilic Janus micelles with polystyrene and poly(methacrylic acid) hemispheres. <i>Journal of the American Chemical Society</i> , 2003 , 125, 3260-7	16.4	327
90	Janus Cylinders. <i>Macromolecules</i> , 2003 , 36, 7894-7898	5.5	176
89	Novel Water-Soluble Micellar Interpolyelectrolyte Complexes <i>Journal of Physical Chemistry B</i> , 2003 , 107, 8093-8096	3.4	78
88	Hyperbranched (Meth)acrylates in Solution, Melt, and Grafted From Surfaces. <i>Topics in Current Chemistry</i> , 2003 , 228, 1-37		53
87	Large Scale Domain Alignment of a Block Copolymer from Solution Using Electric Fields. <i>Macromolecules</i> , 2002 , 35, 1319-1325	5.5	126
86	Benzyl and Cumyl Dithiocarbamates as Chain Transfer Agents in the RAFT Polymerization of N-Isopropylacrylamide. In Situ FT-NIR and MALDITOF MS Investigation. <i>Macromolecules</i> , 2002 , 35, 6819-6827	5.5	320
85	Synthesis and Characterization of Branched Polyelectrolytes. 1. Preparation of Hyperbranched Poly(acrylic acid) via Self-Condensing Atom Transfer Radical Copolymerization. <i>Macromolecules</i> , 2002 , 35, 9270-9281	5.5	123
84	New routes to the synthesis of amylose-block-polystyrene rod-coil block copolymers. <i>Biomacromolecules</i> , 2002 , 3, 368-73	6.9	85
83	Molecular Weight Averages and Degree of Branching in Self-Condensing Vinyl Copolymerization in the Presence of Multifunctional Initiators. <i>Macromolecules</i> , 2002 , 35, 4577-4583	5.5	47
82	Hybrid Nanoparticles with Hyperbranched Polymer Shells via Self-Condensing Atom Transfer Radical Polymerization from Silica Surfaces. <i>Langmuir</i> , 2002 , 18, 3682-3693	4	161
81	Copolymerization of N,N-Dimethylacrylamide with Styrene and Butadiene: The First Example of Polar Growing Chain End/Nonpolar Monomer Cross-Initiation. <i>Macromolecular Rapid Communications</i> , 2001 , 22, 1243	4.8	8
80	Surface-Grafted Hyperbranched Polymers via Self-Condensing Atom Transfer Radical Polymerization from Silicon Surfaces. <i>Macromolecules</i> , 2001 , 34, 6871-6882	5.5	115
79	Amphiphilic Cylindrical CoreBhell Brushes via a G rafting From P rocess Using ATRP. Macromolecules, 2001 , 34, 6883-6888	5.5	409
78	Janus Micelles□ <i>Macromolecules</i> , 2001 , 34, 1069-1075	5.5	366
77	New Strategy for the Synthesis of Halogen-Free Acrylate Macromonomers by Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2001 , 34, 5394-5397	5.5	94

76	Molecular Parameters of Hyperbranched Copolymers Obtained by Self-Condensing Vinyl Copolymerization, 2.□Non-Equal Rate Constants. <i>Macromolecules</i> , 2001 , 34, 2418-2426	5.5	64
75	Anionic Polymerization of (Meth)acrylates in the Presence of Tetraalkylammonium Halide T rialkyl Aluminum Complexes in Toluene. 3. Kinetic Investigations on Primary Acrylates <i>Macromolecules</i> , 2001 , 34, 2115-2120	5.5	9
74	Nanoscopic Surface Patterns from Functional ABC Triblock Copolymers. <i>Macromolecules</i> , 2001 , 34, 7477	′ <i>-</i> 7. 4 88	58
73	Characterization of Highly Branched Poly(methyl methacrylate) by Solution Viscosity and Viscoelastic Spectroscopy. <i>Macromolecules</i> , 2001 , 34, 1677-1684	5.5	104
72	Synthesis of Hyperbranched and Highly Branched Methacrylates by Self-Condensing Group Transfer Copolymerization. <i>Macromolecules</i> , 2001 , 34, 6206-6213	5.5	74
71	DFT study of the effect of sigma-ligands on the structure of ester enolates in THF, as models of the active center in the anionic polymerization of methyl methacrylate. <i>Journal of the American Chemical Society</i> , 2001 , 123, 4932-7	16.4	18
70	Janus Micelles at the Air/Water Interface. <i>Langmuir</i> , 2001 , 17, 6787-6793	4	82
69	Anionic polymerization of methyl methacrylate using tetrakis[tris(dimethylamino)phosphoranylidenamino] phosphonium (P5+) as counterion in tetrahydrofuran. <i>Macromolecular Rapid Communications</i> , 2000 , 21, 390-395	4.8	17
68	Molecular parameters of hyperbranched polymers made by self-condensing vinyl polymerization of macroinimers. <i>Macromolecular Theory and Simulations</i> , 2000 , 9, 621-627	1.5	16
67	Metal-free anionic polymerization of methyl methacrylate in tetrahydrofuran using bis(triphenylphosphoranilydene)ammonium (PNP+) as counterion. <i>Macromolecular Rapid Communications</i> , 2000 , 21, 758-763	4.8	11
66	Synthesis of hyperbranched poly(tert-butyl acrylate) by self-condensing atom transfer radical polymerization of a macroinimer. <i>Macromolecular Rapid Communications</i> , 2000 , 21, 846-852	4.8	57
65	The effect of TMEDA on the kinetics of the anionic polymerization of methyl methacrylate in tetrahydrofuran using lithium as counterion. <i>Macromolecular Chemistry and Physics</i> , 2000 , 201, 1901-197	17.6	15
64	Characterization of Block Copolymers by Liquid Adsorption Chromatography at Critical Conditions. 1. Diblock Copolymers. <i>Macromolecules</i> , 2000 , 33, 3687-3693	5.5	94
63	Anionic Polymerization of (Meth)acrylates in the Presence of Tetraalkylammonium Halidellrialkyl Aluminum Complexes in Toluene. 2.INMR and Quantum-Chemical Study on the Structure of Ester Enolate Complexes as Models of the Active Center. <i>Macromolecules</i> , 2000 , 33, 2887-2893	5.5	15
62	Density Functional Theory Study on the Aggregation and Dissociation Behavior of Lithium Chloride in THF and Its Interaction with the Active Centers of the Anionic Polymerization of Methyl Methacrylate and Styrene. <i>Macromolecules</i> , 2000 , 33, 5686-5692	5.5	35
61	Characterization of Micelles of Polyisobutylene-block-poly(methacrylic acid) in Aqueous Medium. <i>Macromolecules</i> , 2000 , 33, 1734-1740	5.5	112
60	Copolymerization of n-Butyl Acrylate with Methyl Methacrylate and PMMA Macromonomers: Comparison of Reactivity Ratios in Conventional and Atom Transfer Radical Copolymerization. <i>Macromolecules</i> , 1999 , 32, 8331-8335	5.5	191
59	Anionic Polymerization of Alkyl (Meth)acrylates Using Metal-Free Initiators: Effect of Ion Pairing on Initiation Equilibria. <i>Macromolecules</i> , 1999 , 32, 2865-2871	5.5	21

58	Molecular Weight Distribution of Hyperbranched Polymers Generated by Self-Condensing Vinyl Polymerization in Presence of a Multifunctional Initiator. <i>Macromolecules</i> , 1999 , 32, 245-250	5.5	83
57	NMR and Quantum-Chemical Study on the Structure of Ester EnolateAluminum Alkyl Complexes as Models of the Active Center in the Anionic Polymerization of Methacrylates in Toluene. <i>Macromolecules</i> , 1999 , 32, 8340-8349	5.5	13
56	Molecular Parameters of Hyperbranched Copolymers Obtained by Self-Condensing Vinyl Copolymerization. 1. Equal Rate Constants. <i>Macromolecules</i> , 1999 , 32, 2410-2419	5.5	87
55	Main Chain Conformation and Anomalous Elution Behavior of Cylindrical Brushes As Revealed by GPC/MALLS, Light Scattering, and SFM\(\textit{Macromolecules}\), 1999 , 32, 2629-2637	5.5	236
54	Quantum-Chemical (Density Functional Theory) Study of Lithium 2-Methoxyethoxide, Methyl Lithioisobutyrate, and Their Mixed Aggregates as Models of the Active Center in the Anionic Polymerization of Methacrylates. <i>Macromolecules</i> , 1999 , 32, 1731-1736	5.5	15
53	Effect of Lithium Perchlorate on the Kinetics of the Anionic Polymerization of Methyl Methacrylate in Tetrahydrofuran. <i>Macromolecules</i> , 1999 , 32, 1356-1361	5.5	20
52	Living and Controlled Anionic Polymerization of Methacrylates and Acrylates in the Presence of Tetraalkylammonium Halide-Alkylaluminum Complexes in Toluene. <i>Angewandte Chemie - International Edition</i> , 1998 , 37, 1389-1391	16.4	19
51	Effect of Core-Forming Molecules on Molecular Weight Distribution and Degree of Branching in the Synthesis of Hyperbranched Polymers. <i>Macromolecules</i> , 1998 , 31, 239-248	5.5	189
50	Mechanism of Anionic Polymerization of (Meth)acrylates in the Presence of Aluminum Alkyls, 6. Polymerization of Primary and Tertiary Acrylates Macromolecules, 1998, 31, 1705-1709	5.5	17
49	Anionic Polymerization of (Meth)acrylates in the Presence of Tetraalkylammonium Halide I Irialkyl Aluminum Complexes in Toluene, 1. Kinetic Investigations with Methyl Methacrylate. <i>Macromolecules</i> , 1998 , 31, 7127-7132	5.5	14
48	Mechanism of Anionic Polymerization of (Meth)acrylates in the Presence of Aluminum Alkyls. 5. Effect of Lewis Bases on Kinetics and Molecular Weight Distributions Macromolecules, 1998 , 31, 573-57	7 5 ·5	30
47	Synthesis of Linear and Star-Shaped Block Copolymers of Isobutylene and Methacrylates by Combination of Living Cationic and Anionic Polymerizations. <i>Macromolecules</i> , 1998 , 31, 578-585	5.5	82
46	Kinetic Treatment of Slow Initiation in Living Carbocationic Polymerization and Investigation of Benzyl Halides as Initiators for the Polymerization of Isobutylene. <i>Macromolecules</i> , 1998 , 31, 7199-7202	5.5	11
45	Novel initiating systems for the living polymerization of acrylates and methacrylates. <i>Macromolecular Symposia</i> , 1998 , 132, 293-302	0.8	1
44	Practical Applications of Macromonomer Techniques for the Synthesis of Comb-Shaped Copolymers. <i>ACS Symposium Series</i> , 1998 , 208-217	0.4	6
43	Stable Carbanions by Quantitative Metalation of Cationically Obtained Diphenylvinyl and Diphenylmethoxy Compounds: ☐New Initiators for Living Anionic Polymerizations. <i>Macromolecules</i> , 1997 , 30, 6989-6993	5.5	26
42	Molecular Parameters of Hyperbranched Polymers Made by Self-Condensing Vinyl Polymerization. 1. Molecular Weight Distribution. <i>Macromolecules</i> , 1997 , 30, 7015-7023	5.5	224
41	General Kinetic Analysis and Comparison of Molecular Weight Distributions for Various Mechanisms of Activity Exchange in Living Polymerizations. <i>Macromolecules</i> , 1997 , 30, 1253-1266	5.5	94

40	Molecular Parameters of Hyperbranched Polymers Made by Self-Condensing Vinyl Polymerization. 2. Degree of Branching <i>Macromolecules</i> , 1997 , 30, 7024-7033	5.5	278
39	Kinetic Investigation on Metal Free Anionic Polymerization of Methyl Methacrylate Using Tetraphenylphosphonium as the Counterion in Tetrahydrofuran. <i>Macromolecules</i> , 1997 , 30, 1869-1874	5.5	36
38	Polymerization of Methacrylates in the Presence of Tetraphenylphosphonium Cation. 2. Evidence for Phosphorylide-Mediated Polymerizations. <i>Macromolecules</i> , 1997 , 30, 6695-6697	5.5	22
37	Preparation of Hyperbranched Polyacrylates by Atom Transfer Radical Polymerization. 2. Kinetics and Mechanism of Chain Growth for the Self-Condensing Vinyl Polymerization of 2-((2-Bromopropionyl)oxy)ethyl Acrylate. <i>Macromolecules</i> , 1997 , 30, 7034-7041	5.5	175
36	Synthesis of linear and three-arm star tert-chlorine-telechelic polyisobutylenes by a two-step conventional laboratory process. <i>Macromolecular Rapid Communications</i> , 1997 , 18, 417-425	4.8	9
35	Hyperbranched methacrylates by self-condensing group transfer polymerization. <i>Macromolecular Rapid Communications</i> , 1997 , 18, 865-873	4.8	122
34	Kinetic Analysis of Living Polymerization Processes Exhibiting Slow Equilibria. 5. Effect of Monomer Transfer in Cationic Polymerization and Similar Living Processes Macromolecules, 1996 , 29, 5065-5071	5.5	7
33	Kinetic Analysis of Living Polymerization Processes Exhibiting Slow Equilibria. 6. Cationic Polymerization Involving Covalent Species, Ion Pairs, and Free Cations Macromolecules, 1996, 29, 8057	-8063	13
32	Kinetic Analysis of Living Polymerization Systems Exhibiting Slow Equilibria. 3. Associative Mechanism of Group Transfer Polymerization and Ion Pair Generation in Cationic Polymerization. <i>Macromolecules</i> , 1996 , 29, 2339-2345	5.5	28
31	Quantum-Chemical Study of the Structure, Aggregation, and NMR Shifts of the Lithium Ester Enolate of Methyl Isobutyrate. <i>Journal of the American Chemical Society</i> , 1996 , 118, 8897-8903	16.4	31
30	Estimation of Number-Average Molecular Weights of Copolymers by Gel Permeation Chromatographyllight Scattering. <i>Macromolecules</i> , 1996 , 29, 4926-4930	5.5	29
29	Kinetic Analysis of Living Polymerization Systems Exhibiting Slow Equilibria. 4. Dissociative Mechanism of Group Transfer Polymerization and Generation of Free Ions in Cationic Polymerization. <i>Macromolecules</i> , 1996 , 29, 2346-2353	5.5	47
28	Effect of bulkiness and lewis acidity of aluminium compounds on the anionic polymerization of methyl methacrylate in toluene. <i>Macromolecular Symposia</i> , 1996 , 107, 163-176	0.8	16
27	Mechanism of Anionic Polymerization of (Meth)acrylates in the Presence of Aluminium Alkyls IV. Formation of a Co-ordinative Polymer Network via the Living Aluminate End Group. <i>Polymer Journal</i> , 1996 , 28, 954-959	2.7	11
26	Mean square radius of gyration and hydrodynamic radius of jointed star (dumbbell) and H-comb polymers. <i>Macromolecular Theory and Simulations</i> , 1996 , 5, 759-769	1.5	7
25	Acrylic thermoplastic elastomers and comb-shaped poly(methyl methacrylate) via the macromonomer technique. <i>Macromolecular Symposia</i> , 1996 , 101, 19-27	0.8	16
24	Mechanism of anionic polymerization of methyl methacrylate in the presence of aluminium alkyls. <i>Macromolecular Symposia</i> , 1995 , 95, 13-26	0.8	9
23	Mechanism of anionic polymerization of (meth)acrylates in the presence of aluminium alkyls, 2. Kinetic investigations with methyl methacrylate in toluene. <i>Macromolecular Rapid Communications</i> , 1995 , 16, 399-406	4.8	21

22	Acrylic Graft Copolymers Via Macromonomers 1995 , 189-196	1
21	Mechanism of anionic polymerization of (meth)acrylates in the presence of aluminium alkyls, 1. 13C NMR studies of model compounds in toluene. <i>Macromolecular Rapid Communications</i> , 1994 , 15, 517-525 ^{4.8}	26
20	Kinetics and mechanism of group transfer polymerization of N-butyl acrylate catalyzed by Hgl2/(CH3)3Sil in toluene. <i>Macromolecular Symposia</i> , 1994 , 85, 379-392	7
19	Mechanisms and kinetics of the anionic polymerization of acrylates, 3. Effect of lithium chloride and lithium tert-butoxide on the oligomerization of tert-butyl acrylate. <i>Die Makromolekulare Chemie</i> , 1993 , 194, 625-636	20
18	Copolymerization of methacryloyl-terminated PMMA macromonomers with methyl methacrylate. <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1992 , 54-55, 583-594	20
17	The role of association/complexation equilibria in the anionic polymerization of (meth)acrylates. <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1992 , 60, 315-326	65
16	Mechanisms and kinetics of the anionic polymerization of acrylates, 2. Polymerization of tert-butyl acrylate in a flow tube reactor and effect of lithium chloride and lithium tert-butoxide. <i>Die Makromolekulare Chemie</i> , 1992 , 193, 101-112	43
15	Group transfer and anionic polymerization: A critical comparison. <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1990 , 32, 87-104	38
14	Equilibria in the anionic polymerization of methyl methacrylate, 2. Effect of lithium tert-butoxide on rate and equilibrium constants. <i>Die Makromolekulare Chemie</i> , 1990 , 191, 1657-1664	32
13	Mechanisms and kinetics of the anionic polymerization of acrylates, 1. Oligomerization of tert-butyl acrylate and characterization of products. <i>Die Makromolekulare Chemie</i> , 1990 , 191, 2253-2260	27
12	Kinetics of group transfer polymerization of tert-butyl methacrylate in tetrahydrofuran. <i>Die Makromolekulare Chemie</i> , 1989 , 190, 527-539	20
11	Kinetics of group transfer polymerization of methyl methacrylate in tetrahydrofuran, 1. Effect of concentrations of catalyst and initiator on reaction rates. <i>Die Makromolekulare Chemie Rapid Communications</i> , 1987 , 8, 99-107	35
10	Kinetics of group transfer polymerization of methyl methacrylate in tetrahydrofuran, 2. Effect of monomer concentration and temperature on reaction rates. <i>Die Makromolekulare Chemie Rapid Communications</i> , 1987 , 8, 247-253	32
9	Kinetics and Mechanisms in the Anionic Polymerization of Methacrylic Esters 1987 , 205-229	24
8	Kinetics of Group Transfer Polymerization 1987 , 23-40	5
7	Equilibria in the anionic polymerization of methyl methacrylate, 1. Chain-length dependence of the rate and equilibrium constants. <i>Die Makromolekulare Chemie</i> , 1986 , 187, 1473-1482	38
6	Metalloesters, 11. Disproportionation of living (lithiated) oligomers of methyl methacrlylate. <i>Die Makromolekulare Chemie</i> , 1984 , 185, 1819-1826	18
5	Kinetics of the anionic polymerization of methyl methacrylate in tetrahydrofuran using lithium and potassium as counterions. <i>Die Makromolekulare Chemie Rapid Communications</i> , 1982 , 3, 121-125	41

LIST OF PUBLICATIONS

4	Present View of the Anionic Polymerization of Methyl Methacrylate and Related Esters in Polar Solvents. <i>ACS Symposium Series</i> , 1981 , 441-461	0.4	22
3	Kinetics of the anionic polymerization of tert-butyl methacrylate in tetrahydrofuran. <i>Die Makromolekulare Chemie</i> , 1981 , 182, 2863-2871		28
2	Kinetics of the anionic polymerization of methyl methacrylate using cryptated sodium as counterion in tetrahydrofuran. <i>Die Makromolekulare Chemie Rapid Communications</i> , 1981 , 2, 687-691		26
1	Polyelectrolyte Block Copolymer Micelles. <i>Advances in Polymer Science</i> ,173-210	1.3	171