
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11897967/publications.pdf Version: 2024-02-01

ΗΗΙ ΤΕΝ ΚΑΤΕ

#	Article	IF	CITATIONS
1	Lumped-Element Dynamic Electro-Thermal model of a superconducting magnet. Cryogenics, 2016, 80, 346-356.	0.9	54
2	The Influence of the Al Stabilizer Layer Thickness on the Normal Zone Propagation Velocity in High Current Superconductors. Physics Procedia, 2015, 67, 896-902.	1.2	2
3	First experience with the new Coupling Loss Induced Quench system. Cryogenics, 2014, 60, 33-43.	0.9	21
4	The Effect of Ta and Ti Additions on the Strain Sensitivity of Bulk Niobium-Tin. Physics Procedia, 2012, 36, 491-496.	1.2	6
5	Commissioning Test of ATLAS End-Cap Toroidal Magnets. IEEE Transactions on Applied Superconductivity, 2009, 19, 1307-1310.	1.1	0
6	Effects of Unequal Inter and Intra-Toroid Response Times on the Quench Performance of the System of Three ATLAS Toroids. IEEE Transactions on Applied Superconductivity, 2009, 19, 1290-1293.	1.1	1
7	The ATLAS superconducting magnet system at the Large Hadron Collider. Physica C: Superconductivity and Its Applications, 2008, 468, 2137-2142.	0.6	22
8	State of the art powder-in-tube niobium–tin superconductors. Cryogenics, 2008, 48, 308-316.	0.9	54
9	Mechanical Commissioning of the ATLAS Barrel Toroid Magnet. IEEE Transactions on Applied Superconductivity, 2008, 18, 367-370.	1.1	1
10	ATLAS End Cap Toroid Final Integration, Test and Installation. IEEE Transactions on Applied Superconductivity, 2008, 18, 391-394.	1.1	4
11	Theoretical and Experimental Investigation of the Ramp Losses in Conductor and Coil Casing of the ATLAS Barrel Toroid Coils. IEEE Transactions on Applied Superconductivity, 2006, 16, 549-552.	1.1	11
12	ATLAS End Cap Toroid Cold Mass and Cryostat Integration. IEEE Transactions on Applied Superconductivity, 2006, 16, 537-540.	1.1	9
13	The ATLAS Superconducting Magnet System: Status of Construction & Installation. IEEE Transactions on Applied Superconductivity, 2006, 16, 499-503.	1.1	8
14	The Effect of Inter-bundle Resistive Barriers on Coupling Loss, Current Distribution and DC Performance in ITER Conductors. IEEE Transactions on Applied Superconductivity, 2006, 16, 868-871.	1.1	6
15	Interpretation of conduit voltage measurements on the poloidal field insert sample using the CUDI–CICC numerical code. Cryogenics, 2006, 46, 517-529.	0.9	28
16	On-Surface Tests of the ATLAS Barrel Toroid Coils: Acceptance Criteria and Results. IEEE Transactions on Applied Superconductivity, 2006, 16, 557-560.	1.1	8
17	On-Surface Test of the ATLAS Barrel Toroid Coils: Overview. IEEE Transactions on Applied Superconductivity, 2006, 16, 508-511.	1.1	13
18	Assembly Concept and Technology of the ATLAS Barrel Toroid. IEEE Transactions on Applied Superconductivity, 2006, 16, 565-569.	1.1	9

#	Article	IF	CITATIONS
19	Effect of Periodic Cyclic Deformation on the Voltage Current Transition of <tex>\$hboxNb_3hboxSn\$</tex> Strands Tested in the Novel â€~TARSIS' Setup. IEEE Transactions on Applied Superconductivity, 2004, 14, 1464-1467.	1.1	21
20	Electromagnetic Performance of Sub-Size NbTi CICC's Subjected to Transverse Cyclic Loading. IEEE Transactions on Applied Superconductivity, 2004, 14, 1503-1506.	1.1	8
21	Quench Evolution and Hot Spot Temperature in the ATLAS B0 Model Coil. IEEE Transactions on Applied Superconductivity, 2004, 14, 518-521.	1.1	5
22	Change of interstrand contact resistance and coupling loss in various prototype ITER NbTi conductors with transverse loading in the Twente Cryogenic Cable Press up to 40,000 cycles. Cryogenics, 2004, 44, 319-339.	0.9	49
23	ATLAS Magnet Common Cryogenic, Vacuum, Electrical and Control Systems. IEEE Transactions on Applied Superconductivity, 2004, 14, 504-508.	1.1	6
24	Performance of an ITER CS1 Model Coil Conductor Under Transverse Cyclic Loading up to 40,000 Cycles. IEEE Transactions on Applied Superconductivity, 2004, 14, 1489-1494.	1.1	39
25	Strain effects in high temperature superconductors investigated with magneto-optical imaging. IEEE Transactions on Applied Superconductivity, 2003, 13, 3534-3539.	1.1	28
26	Comparing powder magnetization and transport critical current of Bi,Pb(2223) tapes. IEEE Transactions on Applied Superconductivity, 2003, 13, 3702-3705.	1.1	2
27	Evolution of contact resistance and coupling loss in prototype ITER PF NbTi conductors under transverse cyclic load. IEEE Transactions on Applied Superconductivity, 2003, 13, 2388-2391.	1.1	8
28	Self field measurements by hall sensors on the SeCRETS short sample CICC's subjected to cyclic load. IEEE Transactions on Applied Superconductivity, 2003, 13, 1752-1755.	1.1	7
29	Conductor related design considerations for a 1 meter 10 T Nb/sub 3/Sn dipole magnet. IEEE Transactions on Applied Superconductivity, 2003, 13, 1288-1291.	1.1	7
30	Analysis of AC loss in superconducting power devices calculated from short sample data. IEEE Transactions on Applied Superconductivity, 2003, 13, 1731-1734.	1.1	8
31	Current diffusion and normal zone propagation inside the aluminum stabilized superconductor of ATLAS model coil. IEEE Transactions on Applied Superconductivity, 2003, 13, 1684-1687.	1.1	5
32	Mechanical characteristics of the ATLAS B0 model coil. IEEE Transactions on Applied Superconductivity, 2003, 13, 1246-1249.	1.1	2
33	The normal zone propagation in ATLAS B00 model coil. IEEE Transactions on Applied Superconductivity, 2002, 12, 1549-1552.	1.1	5
34	Field decay and snapback measurements using a fast Hall plate detector. IEEE Transactions on Applied Superconductivity, 2002, 12, 86-89.	1.1	7
35	Analysis of the current distribution in the ITER CS-insert model coil conductor by self field measurements. IEEE Transactions on Applied Superconductivity, 2002, 12, 1675-1679.	1.1	13
36	Self field measurements by Hall sensors on the SeCRETS long sample CICCs in SULTAN. IEEE Transactions on Applied Superconductivity, 2002, 12, 1667-1671.	1.1	6

#	Article	IF	CITATIONS
37	20.5 kA current leads for ATLAS Barrel Toroid superconducting magnets. IEEE Transactions on Applied Superconductivity, 2002, 12, 1289-1292.	1.1	9
38	Toward an accurate scaling relation for the critical current in niobium-tin conductors. IEEE Transactions on Applied Superconductivity, 2002, 12, 1029-1032.	1.1	13
39	Interpretation of the critical current in Bi2Sr2Ca2Cu3Ox tape conductors as parallel weak-link and strong-link paths. Physica C: Superconductivity and Its Applications, 2002, 372-376, 1024-1027.	0.6	8
40	The deviatoric strain description of the critical properties of Nb3Sn conductors. Physica C: Superconductivity and Its Applications, 2002, 372-376, 1295-1298.	0.6	34
41	Performance test results of a low-loss 1 MVA BSCCO resonator coil system. Physica C: Superconductivity and Its Applications, 2002, 372-376, 1719-1722.	0.6	4
42	Total AC loss of BSCCO/Ag tapes in power applications, an engineering approach to describe the AC loss in tapes and coils. Physica C: Superconductivity and Its Applications, 2002, 372-376, 1781-1783.	0.6	1
43	Effect of self-field and current non-uniformity on the voltage–temperature characteristic of the ITER central solenoid insert coil by numerical calculations. Cryogenics, 2002, 42, 469-483.	0.9	30
44	Magnetisation loss of BSCCO/Ag superconducting tape exposed to applied field with arbitrary angle. Cryogenics, 2002, 42, 771-778.	0.9	7
45	Temperature and magnetic field dependence of the critical current of Bi/sub 2/Sr/sub 2/Ca/sub 2/Cu/sub 3/O/sub x/ tape conductors. IEEE Transactions on Applied Superconductivity, 2001, 11, 3345-3348.	1.1	37
46	A model to describe the angular dependence of the critical current in a Bi-2223/Ag superconducting tape. Physica C: Superconductivity and Its Applications, 2001, 357-360, 1174-1177.	0.6	22
47	AC loss in cored, stabrite-coated, superconducting cables in response to external compaction and variation of core thickness and width. Cryogenics, 2001, 41, 733-744.	0.9	14
48	Experimental verification of the temperature and strain dependence of the critical properties in Nb/sub 3/Sn wires. IEEE Transactions on Applied Superconductivity, 2001, 11, 1526-1529.	1.1	29
49	Interaction between current imbalance and magnetization in LHC cables. IEEE Transactions on Applied Superconductivity, 2001, 11, 1609-1612.	1.1	11
50	Quench modeling of the ATLAS superconducting toroids. IEEE Transactions on Applied Superconductivity, 2001, 11, 1693-1696.	1.1	5
51	Construction and test of a 1 MVA-class BSCCO resonator coil. IEEE Transactions on Applied Superconductivity, 2001, 11, 1570-1573.	1.1	13
52	V-I curves of a 100-kVA class high-T/sub c/ resonator coil. IEEE Transactions on Applied Superconductivity, 2001, 11, 2204-2207.	1.1	1
53	The B00 model coil in the ATLAS Magnet Test Facility. IEEE Transactions on Applied Superconductivity, 2001, 11, 1582-1585.	1.1	5
54	An engineering formula to describe the AC loss of BSCCO/Ag tape. IEEE Transactions on Applied Superconductivity, 2001, 11, 2623-2626.	1.1	36

#	Article	IF	CITATIONS
55	An optimized BSCCO/Ag resonator coil for utility use. IEEE Transactions on Applied Superconductivity, 2000, 10, 849-852.	1.1	6
56	Interstrand contact resistance and AC loss of a 48-strands Nb/sub 3/Sn CIC conductor with a Cr/Cr-oxide coating. IEEE Transactions on Applied Superconductivity, 2000, 10, 1090-1093.	1.1	8
57	Quench propagation and protection analysis of the ATLAS Toroids. IEEE Transactions on Applied Superconductivity, 2000, 10, 365-368.	1.1	14
58	Electromagnetic and mechanical AC loss of an ITER TF model coil conductor (DP4) under transverse cyclic loading. IEEE Transactions on Applied Superconductivity, 2000, 10, 588-591.	1.1	11
59	Powder-in-tube (PIT) Nb/sub 3/Sn conductors for high-field magnets. IEEE Transactions on Applied Superconductivity, 2000, 10, 975-978.	1.1	51
60	Modeling the current distribution in HTS tapes with transport current and applied magnetic field. IEEE Transactions on Applied Superconductivity, 1999, 9, 797-800.	1.1	11
61	Strain and grain connectivity in Bi2223/Ag superconducting tapes. IEEE Transactions on Applied Superconductivity, 1999, 9, 2702-2705.	1.1	15
62	Magnetisation and transport current loss of a BSCCO/Ag tape in an external AC magnetic field carrying an AC transport current. IEEE Transactions on Applied Superconductivity, 1999, 9, 1185-1188.	1.1	53
63	Electromagnetic and mechanical characterisation of ITER CS-MC conductors affected by transverse cyclic loading. I. Coupling current loss. IEEE Transactions on Applied Superconductivity, 1999, 9, 1069-1072.	1.1	34
64	Progress in the development of Nb/sub 3/Sn conductors based on the "Powder in tube" method with finer filaments. IEEE Transactions on Applied Superconductivity, 1999, 9, 1451-1454.	1.1	24
65	Magnetisation loss of BSCCO/Ag tape in uni-directional and rotating magnetic field. Physica C: Superconductivity and Its Applications, 1999, 325, 1-7.	0.6	8
66	Core-suppressed AC loss and strand-moderated contact resistance in a Nb3Sn Rutherford cable. Cryogenics, 1999, 39, 1-12.	0.9	36
67	Influence of strand surface condition on interstrand contact resistance and coupling loss in NbTi-wound Rutherford cables. Cryogenics, 1999, 39, 197-208.	0.9	20
68	Electromagnetic and mechanical characterisation of ITER CS-MC conductors affected by transverse cyclic loading. III. Mechanical properties. IEEE Transactions on Applied Superconductivity, 1999, 9, 165-168.	1.1	34
69	Scaling of the critical current in ITER type niobium-tin superconductors in relation to the applied field, temperature and uni-axial applied strain. IEEE Transactions on Applied Superconductivity, 1999, 9, 161-164.	1.1	36
70	AC loss in a high-temperature superconducting coil. Physica C: Superconductivity and Its Applications, 1998, 310, 106-110.	0.6	16
71	Critical current of high Tc superconducting Bi2223/Ag tapes. Physica C: Superconductivity and Its Applications, 1998, 309, 197-202.	0.6	11
72	Self-field loss of BSCCO/Ag tape in external AC magnetic field. Physica C: Superconductivity and Its Applications, 1998, 300, 1-5.	0.6	27

#	Article	IF	CITATIONS
73	Numerical calculation of current density distributions in high temperature superconducting tapes with finite thickness in self field and external field. Physica C: Superconductivity and Its Applications, 1998, 310, 36-41.	0.6	45
74	Measuring transport current loss of BSCCO/Ag tapes exposed to external AC magnetic field. Physica C: Superconductivity and Its Applications, 1998, 310, 101-105.	0.6	25
75	Suppression and control of coupling currents in stabrite-coated Rutherford cable with cores of various materials and thicknesses. IEEE Transactions on Applied Superconductivity, 1997, 7, 962-966.	1.1	19
76	The influence of Lorentz force on the AC loss in sub-size cable-in-conduit conductors for ITER. IEEE Transactions on Applied Superconductivity, 1997, 7, 262-265.	1.1	14
77	Rutherford cables with anisotropic transverse resistance. IEEE Transactions on Applied Superconductivity, 1997, 7, 958-961.	1.1	24
78	Small and repetitive axial strain reducing the critical current in BSCCO/Ag superconductors. IEEE Transactions on Applied Superconductivity, 1997, 7, 2034-2037.	1.1	70
79	Characterisation of superconducting components using PSPICE. IEEE Transactions on Applied Superconductivity, 1997, 7, 404-407.	1.1	2
80	Coupling currents losses bench mark test of ITER subsize conductor. IEEE Transactions on Magnetics, 1996, 32, 2826-2829.	1.2	6
81	Descriptive model for the critical current as a function of axial strain in Bi-2212/Ag wires. IEEE Transactions on Magnetics, 1996, 32, 2720-2723.	1.2	56
82	Lattice deformation in an axially strained BiSrCaCuO / Ag tape conductor investigated by X-ray diffraction. Physica C: Superconductivity and Its Applications, 1996, 270, 21-24.	0.6	14
83	Parametric study on coupling loss in subsize ITER Nb/sub 3/Sn cabled specimen. IEEE Transactions on Magnetics, 1996, 32, 2743-2746.	1.2	42
84	A novel miniature superconducting converter for 1 kA magnets. IEEE Transactions on Magnetics, 1996, 32, 2590-2593.	1.2	3
85	Development of a 1 kA, 50 Hz superconducting converter. IEEE Transactions on Applied Superconductivity, 1995, 5, 270-273.	1.1	1
86	Contact resistance and cable loss measurements of coated strands and cables wound from them. IEEE Transactions on Applied Superconductivity, 1995, 5, 692-696.	1.1	22
87	Ramp rate induced quenches in the one-metre dipole model magnets for the CERN LHC. IEEE Transactions on Applied Superconductivity, 1995, 5, 1020-1023.	1.1	12
88	Super coupling currents in Rutherford type of cables due to longitudinal nonhomogeneities of dB/dt. IEEE Transactions on Applied Superconductivity, 1995, 5, 404-407.	1.1	27
89	Compressive and tensile axial strain reduced critical currents in Bi-2212 conductors. IEEE Transactions on Applied Superconductivity, 1995, 5, 1298-1301.	1.1	65
90	Analysis of the AC loss measurements on the one-metre dipole model magnets for the CERN LHC. IEEE Transactions on Magnetics, 1994, 30, 1758-1761.	1.2	5

#	Article	IF	CITATIONS
91	An experimental 11.5 T Nb/sub 3/Sn LHC type of dipole magnet. IEEE Transactions on Magnetics, 1994, 30, 2320-2323.	1.2	22
92	New 50 Hz superconducting power supply for a 2 kA DC magnet. IEEE Transactions on Magnetics, 1994, 30, 1831-1834.	1.2	3
93	Development of a 50-60 Hz thermally switched superconducting rectifier. IEEE Transactions on Applied Superconductivity, 1993, 3, 590-593.	1.1	4
94	Coupling currents in Rutherford cables under time varying conditions. IEEE Transactions on Applied Superconductivity, 1993, 3, 146-149.	1.1	29
95	The reduction of the critical current in Nb/sub 3/Sn cables under transverse loads. IEEE Transactions on Applied Superconductivity, 1993, 3, 559-562.	1.1	12
96	Critical current degradation in Nb/sub 3/Sn cables under transverse pressure. IEEE Transactions on Applied Superconductivity, 1993, 3, 1334-1337.	1.1	31
97	Analysis of the mechanical behaviour of an 11.5 T Nb/sub 3/Sn LHC dipole magnet according to the ring collar concept. IEEE Transactions on Magnetics, 1992, 28, 331-334.	1.2	6
98	NbTi foil thermally controlled switches for superconducting converters with operation frequency up to 50 Hz. Part 1: Experiment. Cryogenics, 1992, 32, 447-450.	0.9	4
99	NbTi thermally controlled switches for superconducting converters with operation frequency up to 50 Hz. Part 2: Theory and analysis. Cryogenics, 1992, 32, 451-454.	0.9	5
100	Development of a thermally switched superconducting rectifier for 100 kA. IEEE Transactions on Magnetics, 1991, 27, 2333-2336.	1.2	13
101	Development of an experimental 10 T Nb/sub 3/Sn dipole magnet for the CERN LHC. IEEE Transactions on Magnetics, 1991, 27, 1996-1999.	1.2	11
102	Optimizing the conductor dimensions for a 10-13 T superconducting dipole magnet (for accelerators). IEEE Transactions on Magnetics, 1991, 27, 2000-2003.	1.2	4
103	The effect of transverse loads up to 300 MPa on the critical currents of Nb/sub 3/Sn cables (for LHC). IEEE Transactions on Magnetics, 1991, 27, 1831-1834.	1.2	18
104	A full scale superconducting rectifier for powering an MRI-magnet. IEEE Transactions on Magnetics, 1989, 25, 1771-1774.	1.2	5
105	Thermally and magnetically controlled superconducting rectifiers. IEEE Transactions on Magnetics, 1989, 25, 1819-1822.	1.2	10
106	Critical current transition study on multifilamentary NbTi superconductors having a Cu, a CuNi, or a mixed matrix. IEEE Transactions on Magnetics, 1988, 24, 1141-1144.	1.2	6
107	Experimental results of thermally controlled superconducting switches for high frequency operation. IEEE Transactions on Magnetics, 1988, 24, 907-910.	1.2	11
108	THE EFFECT OF SELF-FIELD AND GEOMETRY ON THE VOLTAGE-CURRENT CHARACTERISTICS OF MULTIFILAMENTARY WIRES. , 1988, , 888-892.		0

#	Article	IF	CITATIONS
109	DESIGN OF A THREE PHASE THERMALLY SWITCHED 25 kA, 1.5 kW SUPERCONDUCTING RECTIFIER-FLUXPUMP. , 1982, , 753-756.		1
110	On fully superconducting rectifiers and fluxpumps. A review. Part 2: Commutation modes, characteristics and switches. Cryogenics, 1981, 21, 267-277.	0.9	54
111	High current and high power superconducting rectifiers. Cryogenics, 1981, 21, 291-296.	0.9	12
112	Fully superconducting rectifiers and fluxpumps Part 1: Realized methods for pumping flux. Cryogenics, 1981, 21, 195-206.	0.9	137