Norbert SzentandrÃ;ssy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11896728/publications.pdf

Version: 2024-02-01

361413 377865 1,341 54 20 34 g-index citations h-index papers 54 54 54 1533 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Asymmetrical distribution of ion channels in canine and human left-ventricular wall: epicardium versus midmyocardium. Pflugers Archiv European Journal of Physiology, 2005, 450, 307-316.	2.8	118
2	A Multiscale Investigation of Repolarization Variability and Its Role in Cardiac Arrhythmogenesis. Biophysical Journal, 2011, 101, 2892-2902.	0.5	102
3	Activation of Transient Receptor Potential Vanilloid-3 Inhibits Human Hair Growth. Journal of Investigative Dermatology, 2011, 131, 1605-1614.	0.7	101
4	Effects of SEA0400 and KB-R7943 on Na+/Ca2+ exchange current and L-type Ca2+ current in canine ventricular cardiomyocytes. Naunyn-Schmiedeberg's Archives of Pharmacology, 2005, 372, 63-70.	3.0	97
5	Endocardial versus epicardial differences in L-type calcium current in canine ventricular myocytes studied by action potential voltage clamp. Cardiovascular Research, 2003, 58, 66-75.	3.8	78
6	Effects of terpenoid phenol derivatives on calcium current in canine and human ventricular cardiomyocytes. European Journal of Pharmacology, 2004, 487, 29-36.	3.5	58
7	Reverse rate dependency is an intrinsic property of canine cardiac preparations. Cardiovascular Research, 2009, 84, 237-244.	3.8	54
8	Reverse rate-dependent changes are determined by baseline action potential duration in mammalian and human ventricular preparations. Basic Research in Cardiology, 2010, 105, 315-323.	5.9	51
9	Contribution of ion currents to beat-to-beat variability of action potential duration in canine ventricular myocytes. Pflugers Archiv European Journal of Physiology, 2015, 467, 1431-1443.	2.8	40
10	Effects of thymol on calcium and potassium currents in canine and human ventricular cardiomyocytes. British Journal of Pharmacology, 2002, 136, 330-338.	5.4	39
11	Investigation of the role of TASK-2 channels in rat pulmonary arteries; pharmacological and functional studies following RNA interference procedures. British Journal of Pharmacology, 2006, 147, 496-505.	5.4	33
12	Frequency-dependent effects of omecamtiv mecarbil on cell shortening of isolated canine ventricular cardiomyocytes. Naunyn-Schmiedeberg's Archives of Pharmacology, 2017, 390, 1239-1246.	3.0	33
13	Electrophysiological effects of risperidone in mammalian cardiac cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 2002, 366, 350-356.	3.0	28
14	Protein kinase A is activated by then-3 polyunsaturated fatty acid eicosapentaenoic acid in rat ventricular muscle. Journal of Physiology, 2007, 582, 349-358.	2.9	27
15	The Na+/Ca2+ exchange blocker SEA0400 fails to enhance cytosolic Ca2+ transient and contractility in canine ventricular cardiomyocytes. Cardiovascular Research, 2008, 78, 476-484.	3.8	27
16	Effect of thymol on calcium handling in mammalian ventricular myocardium. Life Sciences, 2004, 74, 909-921.	4.3	25
17	Effect of partial blockade of the Na+/Ca2+-exchanger on Ca2+ handling in isolated rat ventricular myocytes. European Journal of Pharmacology, 2007, 576, 1-6.	3.5	22
18	Action potential contour contributes to species differences in repolarization response to \hat{I}^2 -adrenergic stimulation. Europace, 2018, 20, 1543-1552.	1.7	22

#	Article	IF	Citations
19	Hypotonic stress influence the membrane potential and alter the proliferation of keratinocytes in vitro. Experimental Dermatology, 2007, 16, 302-310.	2.9	21
20	Tetrodotoxin blocks L-type Ca2+ channels in canine ventricular cardiomyocytes. Pflugers Archiv European Journal of Physiology, 2012, 464, 167-174.	2.8	21
21	Effect of thymol on kinetic properties of Ca and K currents in rat skeletal muscle. BMC Pharmacology, 2003, 3, 9.	0.4	20
22	Sarcolemmal Ca 2+ -entry through L-type Ca 2+ channels controls the profile of Ca 2+ -activated Cl â^ current in canine ventricular myocytes. Journal of Molecular and Cellular Cardiology, 2016, 97, 125-139.	1.9	20
23	Late sodium current in human, canine and guinea pig ventricular myocardium. Journal of Molecular and Cellular Cardiology, 2020, 139, 14-23.	1.9	20
24	Transient receptor potential melastatin 4 channel inhibitor 9-phenanthrol inhibits K ⁺ but not Ca ²⁺ currents in canine ventricular myocytes. Canadian Journal of Physiology and Pharmacology, 2018, 96, 1022-1029.	1.4	19
25	Ca2+-activated Clâ ⁻ current is antiarrhythmic by reducing both spatial and temporal heterogeneity of cardiac repolarization. Journal of Molecular and Cellular Cardiology, 2017, 109, 27-37.	1.9	18
26	Contribution of I Ks to ventricular repolarization in canine myocytes. Pflugers Archiv European Journal of Physiology, 2006, 452, 698-706.	2.8	17
27	Effects of the PKC inhibitors chelerythrine and bisindolylmaleimide I (GF 109203X) on delayed rectifier K+ currents. Naunyn-Schmiedeberg's Archives of Pharmacology, 2011, 383, 141-148.	3.0	16
28	Asynchronous activation of calcium and potassium currents by isoproterenol in canine ventricular myocytes. Naunyn-Schmiedeberg's Archives of Pharmacology, 2014, 387, 457-467.	3.0	15
29	Time Course of Low-Frequency Oscillatory Behavior in Human Ventricular Repolarization Following Enhanced Sympathetic Activity and Relation to Arrhythmogenesis. Frontiers in Physiology, 2019, 10, 1547.	2.8	14
30	Efficacy of selective NCX inhibition by ORM-10103 during simulated ischemia/reperfusion. European Journal of Pharmacology, 2014, 740, 539-551.	3.5	13
31	Cytosolic calcium changes affect the incidence of early afterdepolarizations in canine ventricular myocytes. Canadian Journal of Physiology and Pharmacology, 2015, 93, 527-534.	1.4	13
32	Therapeutic Approaches of Ryanodine Receptor-Associated Heart Diseases. International Journal of Molecular Sciences, 2022, 23, 4435.	4.1	13
33	Canine Myocytes Represent a Good Model for Human Ventricular Cells Regarding Their Electrophysiological Properties. Pharmaceuticals, 2021, 14, 748.	3.8	12
34	Ion current profiles in canine ventricular myocytes obtained by the "onion peeling―technique. Journal of Molecular and Cellular Cardiology, 2021, 158, 153-162.	1.9	11
35	Tetrodotoxin Blockade on Canine Cardiac L-Type Ca2+ Channels Depends on pH and Redox Potential. Marine Drugs, 2013, 11, 2140-2153.	4.6	10
36	SEA0400 fails to alter the magnitude of intracellular Ca2+ transients and contractions in Langendorff-perfused guinea pig heart. Naunyn-Schmiedeberg's Archives of Pharmacology, 2008, 378, 65-71.	3.0	9

#	Article	IF	CITATIONS
37	9–Anthracene carboxylic acid is more suitable than DIDS for characterization of calcium-activated chloride current during canine ventricular action potential. Naunyn-Schmiedeberg's Archives of Pharmacology, 2015, 388, 87-100.	3.0	9
38	Blockade of sodium‑calcium exchanger via ORM-10962 attenuates cardiac alternans. Journal of Molecular and Cellular Cardiology, 2021, 153, 111-122.	1.9	9
39	Effects of norfluoxetine on the action potential and transmembrane ion currents in canine ventricular cardiomyocytes. Naunyn-Schmiedeberg's Archives of Pharmacology, 2004, 370, 203-10.	3.0	8
40	Effects of ropinirole on action potential characteristics and the underlying ion currents in canine ventricular myocytes. Naunyn-Schmiedeberg's Archives of Pharmacology, 2010, 382, 213-220.	3.0	8
41	Mexiletine-like cellular electrophysiological effects of GS967 in canine ventricular myocardium. Scientific Reports, 2021, 11, 9565.	3.3	8
42	Electrophysiological Effects of the Transient Receptor Potential Melastatin 4 Channel Inhibitor (4-Chloro-2-(2-chlorophenoxy)acetamido) Benzoic Acid (CBA) in Canine Left Ventricular Cardiomyocytes. International Journal of Molecular Sciences, 2021, 22, 9499.	4.1	8
43	Oxidative shift in tissue redox potential increases beat-to-beat variability of action potential duration. Canadian Journal of Physiology and Pharmacology, 2015, 93, 563-568.	1.4	7
44	Effects of articaine and ropivacaine on calcium handling and contractility in canine ventricular myocardium. European Journal of Anaesthesiology, 2010, 27, 153-161.	1.7	6
45	Effects of tacrolimus on action potential configuration and transmembrane ion currents in canine ventricular cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 2013, 386, 239-246.	3.0	6
46	Effects of pioglitazone on cardiac ion currents and action potential morphology in canine ventricular myocytes. European Journal of Pharmacology, 2013, 710, 10-19.	3.5	6
47	Pharmacological Modulation and (Patho)Physiological Roles of TRPM4 Channelâ€"Part 2: TRPM4 in Health and Disease. Pharmaceuticals, 2022, 15, 40.	3.8	6
48	Effects of the antiarrhythmic agent EGIS-7229 (S 21407) on calcium and potassium currents in canine ventricular cardiomyocytes. Naunyn-Schmiedeberg's Archives of Pharmacology, 2001, 363, 604-611.	3.0	5
49	Late Sodium Current of the Heart: Where Do We Stand and Where Are We Going?. Pharmaceuticals, 2022, 15, 231.	3.8	5
50	Late Na+ Current Is [Ca2+]i-Dependent in Canine Ventricular Myocytes. Pharmaceuticals, 2021, 14, 1142.	3.8	4
51	Drug-induced changes in action potential duration are proportional to action potential duration in rat ventricular myocardium. General Physiology and Biophysics, 2010, 29, 309-313.	0.9	3
52	Astaxanthin Exerts Anabolic Effects via Pleiotropic Modulation of the Excitable Tissue. International Journal of Molecular Sciences, 2022, 23, 917.	4.1	2
53	Pharmacological Modulation and (Patho)Physiological Roles of TRPM4 Channelâ€"Part 1: Modulation of TRPM4. Pharmaceuticals, 2022, 15, 81.	3.8	2
54	Exploring the Coordination of Cardiac Ion Channels With Action Potential Clamp Technique. Frontiers in Physiology, 2022, 13, 864002.	2.8	2