Barbara Bellenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1189603/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oral fumaric acid esters for the treatment of active multiple sclerosis: an open-label, baseline-controlled pilot study. European Journal of Neurology, 2006, 13, 604-610.	3.3	195
2	Relevance of Spinal Cord Abnormalities to Clinical Disability in Multiple Sclerosis: MR Imaging Findings in a Large Cohort of Patients. Radiology, 2013, 269, 542-552.	7.3	126
3	Cervical spinal cord volume loss is related to clinical disability progression in multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 410-418.	1.9	111
4	Dissociation of grey and white matter reduction in spinocerebellar ataxia type 3 and 6: A voxel-based morphometry study. Neuroscience Letters, 2006, 408, 230-235.	2.1	81
5	Automated segmentation of changes in FLAIR-hyperintense white matter lesions in multiple sclerosis on serial magnetic resonance imaging. NeuroImage: Clinical, 2019, 23, 101849.	2.7	60
6	Quantitative Assessment of Brain Stem and Cerebellar Atrophy in Spinocerebellar Ataxia Types 3 and 6: Impact on Clinical Status. American Journal of Neuroradiology, 2011, 32, 890-897.	2.4	56
7	Relevance of Spinal Cord Abnormalities to Clinical Disability in Multiple Sclerosis: MR Imaging Findings in a Large Cohort of Patients. Radiology, 2013, 269, 542-552.	7.3	52
8	Sensitivity and reproducibility of a new fast 3D segmentation technique for clinical MR-based brain volumetry in multiple sclerosis. Neuroradiology, 2004, 46, 906-915.	2.2	45
9	Clinically relevant cranio-caudal patterns of cervical cord atrophy evolution in MS. Neurology, 2019, 93, e1852-e1866.	1.1	37
10	Spinal cord atrophy in spinocerebellar ataxia type 3 and 6. Journal of Neurology, 2008, 255, 1244-1249.	3.6	36
11	Association of Gray Matter Atrophy Patterns With Clinical Phenotype and Progression in Multiple Sclerosis. Neurology, 2021, 96, e1561-e1573.	1.1	28
12	Progressive multifocal leukoencephalopathy during fumarate monotherapy of psoriasis. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e85.	6.0	25
13	Evaluation of CNS involvement in myotonic dystrophy type 1 and type 2 by transcranial sonography. Journal of Neurology, 2015, 262, 365-374.	3.6	25
14	Two different phenomena in basic motor speech performance in premanifest Huntington disease. Neurology, 2016, 86, 1329-1335.	1.1	23
15	Relevance of early cervical cord volume loss in the disease evolution of clinically isolated syndrome and early multiple sclerosis: a 2-year follow-up study. Journal of Neurology, 2017, 264, 1402-1412.	3.6	23
16	1H-Magnetic Resonance Spectroscopy in diffuse and focal cervical cord lesions in Multiple Sclerosis. European Radiology, 2013, 23, 3379-3392.	4.5	21
17	Validation of mean upper cervical cord area (MUCCA) measurement techniques in multiple sclerosis (MS): High reproducibility and robustness to lesions, but large software and scanner effects. NeuroImage: Clinical, 2019, 24, 101962.	2.7	21
18	Temporal Dynamics of Diffusion Metrics in Early Multiple Sclerosis and Clinically Isolated Syndrome: A 2-Year Follow-Up Tract-Based Spatial Statistics Study. Frontiers in Neurology, 2019, 10, 1165.	2.4	17

BARBARA BELLENBERG

#	Article	IF	CITATIONS
19	Chitinase 3–like 1 and neurofilament light chain in CSF and CNS atrophy in MS. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, e906.	6.0	17
20	Benefit of repetitive intrathecal triamcinolone acetonide therapy in predominantly spinal multiple sclerosis: prediction by upper spinal cord atrophy. Therapeutic Advances in Neurological Disorders, 2009, 2, 349-355.	3.5	15
21	Cervical cord and ventricle affection in neuromyelitis optica. Acta Neurologica Scandinavica, 2017, 135, 324-331.	2.1	15
22	Monozygotic twins with a new compound heterozygous SPG11 mutation and different disease expression. Journal of the Neurological Sciences, 2017, 381, 265-268.	0.6	12
23	Association of smoking but not HLA-DRB1*15:01, <i>APOE</i> or body mass index with brain atrophy in early multiple sclerosis. Multiple Sclerosis Journal, 2019, 25, 661-668.	3.0	12
24	Multiple sclerosis risk loci correlate with cervical cord atrophy and may explain the course of disability. Neurogenetics, 2015, 16, 161-168.	1.4	11
25	A new sulcus-corrected approach for assessing cerebellar volume in spinocerebellar ataxia. Psychiatry Research - Neuroimaging, 2011, 193, 123-130.	1.8	10
26	Cervical cord area is associated with infratentorial grey and white matter volume predominantly in relapsing–remitting multiple sclerosis: A study using semi-automated cord volumetry and voxel-based morphometry. Multiple Sclerosis and Related Disorders, 2015, 4, 264-272.	2.0	10
27	Characterization of Iron Accumulation in Deep Gray Matter in Myotonic Dystrophy Type 1 and 2 Using Quantitative Susceptibility Mapping and R2* Relaxometry: A Magnetic Resonance Imaging Study at 3 Tesla. Frontiers in Neurology, 2019, 10, 1320.	2.4	10
28	Quantification of Cervical Cord Cross-Sectional Area: Which Acquisition, Vertebra Level, and Analysis Software? A Multicenter Repeatability Study on a Traveling Healthy Volunteer. Frontiers in Neurology, 2021, 12, 693333.	2.4	8
29	Central Atrophy Early in Multiple Sclerosis: Third Ventricle Volumetry versus Planimetry. Journal of Neuroimaging, 2017, 27, 348-354.	2.0	7
30	Damage in the Thalamocortical Tracts is Associated With Subsequent Thalamus Atrophy in Early Multiple Sclerosis. Frontiers in Neurology, 2020, 11, 575611.	2.4	6
31	Progressive spinal cord atrophy in manifest and premanifest Huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 614-616.	1.9	5
32	Metabolic profiles by 1H-magnetic resonance spectroscopy in natalizumab-associated post-PML lesions of multiple sclerosis patients who survived progressive multifocal leukoencephalopathy (PML). PLoS ONE, 2017, 12, e0176415.	2.5	5
33	Insight into Metabolic 1H-MRS Changes in Natalizumab Induced Progressive Multifocal Leukoencephalopathy Brain Lesions. Frontiers in Neurology, 2017, 8, 454.	2.4	4
34	Developmental Venous Anomalies are More Common in Patients with Multiple Sclerosis and Clinically Isolated Syndrome. Clinical Neuroradiology, 2021, 31, 225-234.	1.9	4
35	Microstructural White Matter Alterations in Cognitively Impaired Patients at Early Stages of Multiple Sclerosis. Clinical Neuroradiology, 2021, 31, 993-1003.	1.9	3
36	Width of the second T=(3/2) state inBe9. Physical Review C, 1986, 34, 1991-1993.	2.9	1

#	Article	IF	CITATIONS
37	Editorial for "Improved Assessment of Longitudinal Spinal Cord Atrophy in Multiple Sclerosis Using a Registrationâ€Based Approach: Relevance for Clinical Studies― Journal of Magnetic Resonance Imaging, 2022, 55, 1569-1570.	3.4	0
38	Quantification of individual remyelination during short-term disease course by synthetic magnetic resonance imaging. Brain Communications, 0, , .	3.3	0