Yizhong Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11895972/publications.pdf Version: 2024-02-01

YIZHONG HUANG

#	Article	IF	CITATIONS
1	Tunable, Continuous-Wave, Deep-Ultraviolet Laser Generation by Intracavity Frequency Doubling of Visible Fiber Lasers. Journal of Lightwave Technology, 2022, 40, 3900-3906.	4.6	4
2	High-performance graphene-integrated thermo-optic switch: design and experimental validation [Invited]. Optical Materials Express, 2020, 10, 387.	3.0	13
3	Ultrafast Raman Fiber Laser Based on Cavity Matching Scheme and Heavily Germania-Core Fiber. Journal of Lightwave Technology, 2019, 37, 2914-2919.	4.6	5
4	Integrated photonics put at full stretch: flexible and stretchable photonic devices enabled by optical and mechanical co-design. , 2019, , .		0
5	High-performance flexible waveguide-integrated photodetectors. Optica, 2018, 5, 44.	9.3	54
6	Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide. Photonics Research, 2018, 6, 506.	7.0	78
7	Stretchable Integrated Microphotonics. , 2018, , .		1
8	212-kHz-linewidth, transform-limited pulses from a single-frequency Q-switched fiber laser based on a few-layer Bi ₂ Se ₃ saturable absorber. Photonics Research, 2018, 6, C29.	7.0	29
9	A new twist on glass: A brittle material enabling flexible integrated photonics. International Journal of Applied Glass Science, 2017, 8, 61-68.	2.0	27
10	Chalcogenide glass-on-graphene photonics. Nature Photonics, 2017, 11, 798-805.	31.4	190
11	12-W average-power, 700-W peak-power, 100-ps dissipative soliton resonance in a compact Er:Yb co-doped double-clad fiber laser. Optics Letters, 2017, 42, 462.	3.3	59
12	Gamma radiation effects in amorphous silicon and silicon nitride photonic devices. Optics Letters, 2017, 42, 587.	3.3	29
13	Broadband Transparent Optical Phase Change Materials. , 2017, , .		25
14	Chalcogenide Glass-on-Graphene Photonics. , 2017, , .		0
15	Low-loss photonic device in Ge–Sb–S chalcogenide glass. Optics Letters, 2016, 41, 3090.	3.3	65
16	Gradient Polymer Nanofoams for Encrypted Recording of Chemical Events. ACS Nano, 2016, 10, 10716-10725.	14.6	11
17	Graphene mode-locked and Q-switched 2 - î¼ m Tm/Ho codoped fiber lasers using 1212-nm high-efficient pumping. Optical Engineering, 2016, 55, 081310.	1.0	16
18	1484-nm two-cascaded Raman fiber laser mode-locked by an intermode-beating mode-locking technique. Optical Engineering, 2015, 54, 046102.	1.0	1

YIZHONG HUANG

#	Article	IF	CITATIONS
19	Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe_2) for passively mode-locked soliton fiber laser [Invited]. Photonics Research, 2015, 3, A79.	7.0	227
20	1212 nm high-efficiently-pumped 2 µm Tm/Ho-co-doped fiber laser Q-switched by graphene. , 2015, , .		0
21	Direct generation of 2  W average-power and 232  nJ picosecond pulses from an ultra-simple Y double-clad fiber laser. Optics Letters, 2015, 40, 1097. Nanosecond-Pulsed, Dual-Wavelength Passively Q-Switched c-Cut	b-doped	28
22	Nd:YVO <inline-formula><tex-math>\$_{f 4}\$ </tex-math></inline-formula> Laser Using a Few-Layer Bi <inline-formula><tex-math>\$_{f 2}\$</tex-math></inline-formula> Se <inline-formula><tex-math>\$_{f 3}\$</tex-math></inline-formula> Saturable Absorber. IEEE Journal of Selected Topics in	2.9	14
23	Quantum Electronics, 2015, 21, 369-374. Passively Q-switched Nd:YAIO_3 nanosecond laser using MoS_2 as saturable absorber. Optics Express, 2014, 22, 28934.	3.4	123
24	Passively Q-switched linear-cavity erbium-doped fiber laser with few-layer TI: Bi2Se3 saturable absorber. , 2014, , .		4
25	2-μm wavelength all-fiber Q-switched double-clad fiber laser using monopiece single-layer chemical-vapor-deposition graphene. Optical Engineering, 2014, 53, 106103.	1.0	3
26	Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS_2 saturable absorber. Optics Express, 2014, 22, 25258.	3.4	183
27	1-, 1.5-, and 2-μm Fiber Lasers Q-Switched by a Broadband Few-Layer MoS ₂ Saturable Absorber. Journal of Lightwave Technology, 2014, 32, 4679-4686.	4.6	318
28	Topological-Insulator Passively Q-Switched Double-Clad Fiber Laser at 2 <formula formulatype="inline"> <tex notation="TeX">\$mu\$</tex>m Wavelength. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 1-8.</formula 	2.9	86
29	Passive Synchronization of 1.06- and 1.53-(mu) m Fiber Lasers Q-switched by a Common Graphene SA. IEEE Photonics Technology Letters, 2014, 26, 1474-1477.	2.5	23
30	Preparation of Few-Layer Bismuth Selenide by Liquid-Phase-Exfoliation and Its Optical Absorption Properties. Scientific Reports, 2014, 4, 4794.	3.3	112
31	106μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi_2Se_3 as a saturable absorber. Optics Express, 2013, 21, 29516.	3.4	319
32	Multiwavelength Dissipative-Soliton Generation in Yb-Fiber Laser Using Graphene-Deposited Fiber-Taper. IEEE Photonics Technology Letters, 2012, 24, 1539-1542.	2.5	56