Bruce A Moyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1189580/publications.pdf

Version: 2024-02-01

176 papers 8,256 citations

28274 55 h-index 84 g-index

199 all docs 199 docs citations

times ranked

199

5671 citing authors

#	Article	IF	CITATIONS
1	The Coordination Chemistry and Stoichiometry of Extracted Diglycolamide Complexes of Lanthanides in Extraction Chromatography Materials. Solvent Extraction and Ion Exchange, 2022, 40, 6-27.	2.0	11
2	A Photoresponsive Receptor with a 10 ⁵ Magnitude of Reversible Anionâ€Binding Switching. Chemistry - A European Journal, 2022, , .	3.3	2
3	Fabrication and Characterization of Composite Membranes for the Concentration of Lithium Containing Solutions Using Forward Osmosis. Advanced Sustainable Systems, 2020, 4, 2000165.	5.3	5
4	Structure Activity Relationship Approach toward the Improved Separation of Rare-Earth Elements Using Diglycolamides. Inorganic Chemistry, 2020, 59, 17620-17630.	4.0	39
5	Synergistic Selfâ€Assembly of Oxoanions and dâ€Block Metal Ions with Heteroditopic Receptors into Tripleâ€Stranded Helicates. Chemistry - A European Journal, 2020, 26, 14290-14294.	3.3	3
6	Molecular Recognition at Mineral Interfaces: Implications for the Beneficiation of Rare Earth Ores. ACS Applied Materials & Date: ACS ACS Applied Materials & Date: ACS	8.0	20
7	Neutron Spectroscopic and Thermochemical Characterization of Lithium–Aluminum-Layered Double Hydroxide Chloride: Implications for Lithium Recovery. Journal of Physical Chemistry C, 2019, 123, 20723-20729.	3.1	20
8	Extraction Chromatographic Materials for Clean Hydrometallurgical Separation of Rare-Earth Elements Using Diglycolamide Extractants. Industrial & Elements Chemistry Research, 2019, 58, 20081-20089.	3.7	19
9	Sequestration of trivalent americium and lanthanide nitrates with bis-lactam-1,10-phenanthroline ligand in a hydrocarbon solvent. RSC Advances, 2019, 9, 26537-26541.	3.6	16
10	Efficient Separation of Light Lanthanides(III) by Using Bisâ€Lactam Phenanthroline Ligands. Chemistry - A European Journal, 2019, 25, 6326-6331.	3.3	51
11	Enhancing selectivity of cation exchange with anion receptors. Chemical Communications, 2019, 55, 3590-3593.	4.1	8
12	Lithium aluminumâ€layered double hydroxide chlorides (<scp>LDH</scp>): Formation enthalpies and energetics for lithium ion capture. Journal of the American Ceramic Society, 2019, 102, 2398-2404.	3.8	34
13	Guanidinium-Based Ionic Covalent Organic Framework for Rapid and Selective Removal of Toxic Cr(VI) Oxoanions from Water. Environmental Science & Envir	10.0	101
14	Simple guanidinium motif for the selective binding and extraction of sulfate. Separation Science and Technology, 2018, 53, 1864-1873.	2.5	12
15	Selective Solid–Liquid and Liquid–Liquid Extraction of Lithium Chloride Using Strapped Calix[4]pyrroles. Angewandte Chemie, 2018, 130, 12100-12104.	2.0	17
16	Selective Solid–Liquid and Liquid–Liquid Extraction of Lithium Chloride Using Strapped Calix[4]pyrroles. Angewandte Chemie - International Edition, 2018, 57, 11924-11928.	13.8	76
17	Innentitelbild: Selective Solid-Liquid and Liquid-Liquid Extraction of Lithium Chloride Using Strapped Calix[4]pyrroles (Angew. Chem. 37/2018). Angewandte Chemie, 2018, 130, 11998-11998.	2.0	O
18	Lithium Recovery from Aqueous Resources and Batteries: A Brief Review. Johnson Matthey Technology Review, 2018, 62, 161-176.	1.0	107

#	Article	IF	CITATIONS
19	Surprisingly selective sulfate extraction by a simple monofunctional di(imino)guanidinium micelle-forming anion receptor. Chemical Communications, 2018, 54, 10048-10051.	4.1	27
20	Outer-Sphere Water Clusters Tune the Lanthanide Selectivity of Diglycolamides. ACS Central Science, 2018, 4, 739-747.	11.3	69
21	Capping the calix: how toluene completes cesium(<scp>i</scp>) coordination with calix[4]pyrrole. Chemical Communications, 2017, 53, 5610-5613.	4.1	18
22	Bis-lactam-1,10-phenanthroline (BLPhen), a New Type of Preorganized Mixed N,O-Donor Ligand That Separates Am(III) over Eu(III) with Exceptionally High Efficiency. Inorganic Chemistry, 2017, 56, 5911-5917.	4.0	64
23	Recovery of Lithium from Geothermal Brine with Lithium–Aluminum Layered Double Hydroxide Chloride Sorbents. Environmental Science & Environmental S	10.0	132
24	Trefoil-Shaped Outer-Sphere Ion Clusters Mediate Lanthanide(III) Ion Transport with Diglycolamide Ligands. Journal of the American Chemical Society, 2017, 139, 17350-17358.	13.7	60
25	"Straining―to Separate the Rare Earths: How the Lanthanide Contraction Impacts Chelation by Diglycolamide Ligands. Inorganic Chemistry, 2017, 56, 1152-1160.	4.0	68
26	Tandem dissolution of UO ₃ in amide-based acidic ionic liquid and in situ electrodeposition of UO ₂ with regeneration of the ionic liquid: a closed cycle. Dalton Transactions, 2016, 45, 10151-10154.	3.3	14
27	Thermal stability study of a new guanidine suppressor for the next-generation caustic-side solvent extraction process. Separation Science and Technology, 2016, 51, 1133-1140.	2.5	2
28	Computer-Aided Molecular Design of Bis-phosphine Oxide Lanthanide Extractants. Inorganic Chemistry, 2016, 55, 5787-5803.	4.0	46
29	α,α′,α″,α′″- <i>meso</i> tetrahexyltetramethyl-calix[4]pyrrole: an easy-to-prepare, isomerically pure a extractant with enhanced solubility in organic solvents. Supramolecular Chemistry, 2016, 28, 176-187.	nion 1.2	8
30	Sodium Sulfate Separation from Aqueous Alkaline Solutions via Crystalline Urea-Functionalized Capsules: Thermodynamics and Kinetics of Crystallization. Crystal Growth and Design, 2015, 15, 517-522.	3.0	20
31	Dissolution of the Rareâ€Earth Mineral Bastnaesite by Acidic Amide Ionic Liquid for Recovery of Critical Materials. European Journal of Inorganic Chemistry, 2015, 2015, 4354-4361.	2.0	17
32	Critical Materials Recovery from Solutions and Wastes: Retrospective and Outlook. Environmental Science & Environmental Scienc	10.0	6
33	Thermal Degradation of the Solvent Employed in the Next-Generation Caustic-Side Solvent Extraction Process and its Effect on the Extraction, Scrubbing, and Stripping of Cesium. Solvent Extraction and Ion Exchange, 2015, 33, 576-591.	2.0	6
34	Minor actinide separation in the reprocessing of spent nuclear fuels., 2015,, 289-312.		24
35	A conformationally persistent pseudo-bicyclic guanidinium for anion coordination as stabilized by dual intramolecular hydrogen bonds. RSC Advances, 2015, 5, 107266-107269.	3.6	9
36	Radiolytic Treatment of the Next-Generation Caustic-Side Solvent Extraction (NGS) Solvent and its Effect on the NGS Process. Solvent Extraction and Ion Exchange, 2015, 33, 134-151.	2.0	11

#	Article	IF	Citations
37	Recovery of Uranium from Wet Phosphoric Acid by Solvent Extraction Processes. Chemical Reviews, 2014, 114, 12002-12023.	47.7	151
38	Crown ethers in graphene. Nature Communications, 2014, 5, 5389.	12.8	142
39	Bipyrrole-Strapped Calix[4]pyrroles: Strong Anion Receptors That Extract the Sulfate Anion. Journal of the American Chemical Society, 2014, 136, 15079-15085.	13.7	79
40	Calix[4]arene-bis(t-octylbenzo-18-crown-6) as an extraordinarily effective macrocyclic receptor for the univalent thallium cation. Structural Chemistry, 2014, 25, 847-852.	2.0	7
41	Challenges to achievement of metal sustainability in our high-tech society. Chemical Society Reviews, 2014, 43, 2451-2475.	38.1	208
42	Direct Electrodeposition of UO2 from Uranyl Bis(trifluoromethanesulfonyl)imide Dissolved in 1-Ethyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imide Room Temperature Ionic Liquid System. Electrochimica Acta, 2014, 115, 630-638.	5.2	17
43	Solvent extraction of Li+, H3O+ and NH4 + into nitrobenzene by using sodium dicarbollylcobaltate and calix[4]arene-bis(t-octylbenzo-18-crown-6). Journal of Radioanalytical and Nuclear Chemistry, 2013, 295, 2171-2174.	1.5	3
44	First Experimentally Determined Thermodynamic Values of Francium: Hydration Energy, Energy of Partitioning, and Thermodynamic Radius. Journal of Physical Chemistry B, 2013, 117, 9258-9261.	2.6	3
45	Lipophilic, Mono-ionizable, Calix[4]arene-bis(benzocrown-6) Compounds for Solvent Extraction of Cesium from Nuclear Wastes: Synthesis and Evaluation. Solvent Extraction and Ion Exchange, 2013, 31, 683-696.	2.0	14
46	Synergistic extraction of some univalent cations into nitrobenzene by using cesium dicarbollylcobaltate and calix[4]arene-bis(t-octylbenzo-18-crown-6). Journal of Radioanalytical and Nuclear Chemistry, 2013, 295, 1015-1018.	1.5	4
47	Capture and metathesis-based release of potassium salts by a multitopic ion receptor. Chemical Communications, 2013, 49, 2112.	4.1	23
48	A Case for Molecular Recognition in Nuclear Separations: Sulfate Separation from Nuclear Wastes. Inorganic Chemistry, 2013, 52, 3473-3490.	4.0	130
49	Interaction of the cesium cation with calix[4]arene-bis(t-octylbenzo-18-crown-6): Extraction and DFT study. Journal of Molecular Structure, 2013, 1033, 14-18.	3.6	10
50	Highly Lipophilic, Mono-ionizable Calix[4]arene-benzocrown-6 Extractants for Removal of Radiocesium from Nuclear Wastes. Solvent Extraction and Ion Exchange, 2013, 31, 697-714.	2.0	6
51	KF and CsF Recognition and Extraction by a Calix[4]crown-5 Strapped Calix[4]pyrrole Multitopic Receptor. Journal of the American Chemical Society, 2012, 134, 20837-20843.	13.7	82
52	Controlling Cesium Cation Recognition via Cation Metathesis within an Ion Pair Receptor. Journal of the American Chemical Society, 2012, 134, 1782-1792.	13.7	87
53	Selectivity Control in Synergistic Liquid–Liquid Anion Exchange of Univalent Anions via Structure-Specific Cooperativity between Quaternary Ammonium Cations and Anion Receptors. Analytical Chemistry, 2012, 84, 8214-8221.	6.5	7
54	Interaction of Cesium Ions with Calix[4]arene-bis(<i>t</i> -octylbenzo-18-crown-6): NMR and Theoretical Study. Journal of Physical Chemistry B, 2011, 115, 7578-7587.	2.6	131

#	Article	lF	Citations
55	Sulfate Separation from Aqueous Alkaline Solutions by Selective Crystallization of Alkali Metal Coordination Capsules. Crystal Growth and Design, 2011, 11, 2702-2706.	3.0	66
56	Supramolecular organization of calix[4]pyrrole with a methyl-trialkylammonium anion exchanger leads to remarkable reversal of selectivity for sulfate extraction vs. nitrate. Chemical Communications, 2011, 47, 7611.	4.1	40
57	Enhanced liquid–liquid anion exchange using macrocyclic anion receptors: effect of receptor structure on sulphate–nitrate exchange selectivity. Supramolecular Chemistry, 2010, 22, 653-671.	1.2	28
58	Selectivity Principles in Anion Separation by Crystallization of Hydrogen-Bonding Capsules. Journal of the American Chemical Society, 2010, 132, 7177-7185.	13.7	114
59	Robustness of the CSSX Process to Feed Variation: Efficient Cesium Removal from the High Potassium Wastes at Hanford. Solvent Extraction and Ion Exchange, 2010, 28, 19-48.	2.0	29
60	Alternatives to Nitric Acid Stripping in the Causticâ€side Solvent Extraction (CSSX) Process for Cesium Removal from Alkaline Highâ€Level Waste. Solvent Extraction and Ion Exchange, 2009, 27, 172-198.	2.0	17
61	Sulfate Recognition by Persistent Crystalline Capsules with Rigidified Hydrogenâ€Bonding Cavities. Angewandte Chemie - International Edition, 2008, 47, 1866-1870.	13.8	179
62	Enhanced Anion Exchange for Selective Sulfate Extraction: Overcoming the Hofmeister Bias. Journal of the American Chemical Society, 2008, 130, 14386-14387.	13.7	107
63	Calix[4]pyrrole:  A New Ion-Pair Receptor As Demonstrated by Liquidâ°Liquid Extraction. Journal of the American Chemical Society, 2008, 130, 4129-4139.	13.7	158
64	Extraction of Cesium by a Calix[4]areneâ€Crownâ€6 Ether Bearing a Pendant Amine Group. Solvent Extraction and Ion Exchange, 2007, 25, 373-388.	2.0	15
65	Sulfate separation by selective crystallization of a urea-functionalized metal–organic framework. Chemical Communications, 2007, , 1541-1543.	4.1	103
66	Octamethyl-octaundecylcyclo[8]pyrrole:  A Promising Sulfate Anion Extractant. Journal of the American Chemical Society, 2007, 129, 11020-11021.	13.7	139
67	Anion Partitioning and Ion-Pairing Behavior of Anions in the Extraction of Cesium Salts by 4,5 Â -Bis(tert-octylbenzo)dibenzo-24-crown-8 in 1,2-Dichloroethane. Inorganic Chemistry, 2007, 46, 261-272.	4.0	39
68	Anion Separation with Metal–Organic Frameworks. European Journal of Inorganic Chemistry, 2007, 2007, 1321-1340.	2.0	341
69	Supramolecular Chemistry of Environmentally Relevant Anions. Advances in Inorganic Chemistry, 2006, 59, 175-204.	1.0	70
70	A Striking Effect of Ionicâ€Liquid Anions in the Extraction of Sr2+ and Cs+ by Dicyclohexanoâ€18â€Crownâ€6. Solvent Extraction and Ion Exchange, 2006, 24, 19-31.	2.0	107
71	Anion Separation by Selective Crystallization of Metalâ^'Organic Frameworks. Inorganic Chemistry, 2006, 45, 6446-6452.	4.0	90
72	Anion Coordination in Metalâ^'Organic Frameworks Functionalized with Urea Hydrogen-Bonding Groups. Crystal Growth and Design, 2006, 6, 555-563.	3.0	101

#	Article	IF	CITATIONS
73	Combined Extraction of Cesium and Strontium from Alkaline Nitrate Solutions. Solvent Extraction and Ion Exchange, 2006, 24, 197-217.	2.0	19
74	Pseudoâ€Hydroxide Extraction in the Separation of Sodium Hydroxide from Aqueous Solutions Using Alkyl Phenols. Solvent Extraction and Ion Exchange, 2006, 24, 387-405.	2.0	5
75	Calix[4]pyrrole: An Old yet New Ion-Pair Receptor. Angewandte Chemie - International Edition, 2005, 44, 2537-2542.	13.8	255
76	Immobilization of lithium-selective 14-crown-4 on crosslinked polymer supports. Polymer, 2005, 46, 6347-6352.	3.8	17
77	Fundamental Studies Regarding Synergism Between Calix[4]areneâ€bis(⟨i⟩tert⟨/i⟩â€octylbenzoâ€crownâ€6) and Alcohol Modifiers in the Solvent Extraction of Cesium Nitrate. Solvent Extraction and Ion Exchange, 2005, 23, 23-57.	2.0	31
78	An Equilibrium Model of Pseudo-Hydroxide Extraction in the Separation of Sodium Hydroxide from Aqueous Solutions using Lipophilic Fluorinated Alcohols and Phenols. Separation Science and Technology, 2005, 40, 725-738.	2.5	8
79	Structural Design Criteria for Anion Hosts:Â Strategies for Achieving Anion Shape Recognition through the Complementary Placement of Urea Donor Groups. Journal of the American Chemical Society, 2005, 127, 1810-1819.	13.7	240
80	A coordinatively saturated sulfate encapsulated in a metal–organic framework functionalized with urea hydrogen-bonding groups. Chemical Communications, 2005, , 5971.	4.1	168
81	Use of Macrocycles in Nuclear-Waste Cleanup: A Realworld Application of a Calixcrown in Cesium Separation Technology., 2005,, 383-405.		28
82	Synthesis and Properties of Calix[4]areneâ€bis[4â€(2â€ethylhexyl)benzoâ€crownâ€6], A Cesium Extractant with Improved Solubility. Solvent Extraction and Ion Exchange, 2004, 22, 611-636.	2.0	34
83	A solution to stripping problems caused by organophilic anion impurities in crown-ether-based solvent extraction systems: a case study of cesium removal from radioactive wastes. Hydrometallurgy, 2004, 72, 9-19.	4.3	35
84	pHâ€&witchable Cesium Nitrate Extraction with Calix[4]arene Mono andbis(Benzoâ€crownâ€6) Ethers Bearing Amino Functionalities. Solvent Extraction and Ion Exchange, 2004, 22, 637-661.	2.0	21
85	Structural Criteria for the Rational Design of Selective Ligands:  Convergent Hydrogen Bonding Sites for the Nitrate Anion. Journal of the American Chemical Society, 2004, 126, 7925-7934.	13.7	89
86	Dual-Host Combinations: Using Tripodal Amides to Enhance Cesium Nitrate Extraction by Crown Ethers. , 2004, , 125-150.		5
87	Rational Design of Cesium-Selective Ionophores: Dihydrocalix[4]arene Crown-6 Ethers. European Journal of Organic Chemistry, 2003, 2003, 4862-4869.	2.4	22
88	New amino-functionalized 1,3-alternate calix[4] arene bis- and mono-(benzo-crown-6 ethers) for pH-switched cesium nitrate extraction. Tetrahedron Letters, 2003, 44, 5397-5401.	1.4	29
89	Selectivity of Calix[4]arene-bis(benzocrown-6) in the Complexation and Transport of Francium Ion. Journal of the American Chemical Society, 2003, 125, 1126-1127.	13.7	37
90	Synergistic Pseudo-Hydroxide Extraction:Â Synergism and Anion Selectivity in Sodium Extraction Using a Crown Ether and a Series of Weak Lipophilic Acids. Analytical Chemistry, 2003, 75, 405-412.	6.5	12

#	Article	IF	Citations
91	Vibrational Spectroscopy of Weak Hydroxy Acids Used as Extractants of Sodium Hydroxide into 1-Octanol. Applied Spectroscopy, 2003, 57, 238-241.	2.2	6
92	Fluorinated calixpyrroles: anion-binding extractants that reduce the Hofmeister bias. Chemical Communications, 2003, , 2248.	4.1	48
93	Development of Effective Solvent Modifiers for the Solvent Extraction of Cesium from Alkaline Highâ€Level Tank Waste. Solvent Extraction and Ion Exchange, 2003, 21, 141-170.	2.0	67
94	Separation of NaOH by Solvent Extraction Using Weak Hydroxy Acids. Solvent Extraction and Ion Exchange, 2003, 21, 483-504.	2.0	12
95	Selective carrier-mediated cesium transport through polymer inclusion membranes by calix[4]arene-crown-6 carriers from complex aqueous mixtures. Radiochimica Acta, 2002, 90, 43-52.	1.2	21
96	Selective Separation of Hydroxide from Alkaline Nuclear Tank Waste by Liquidâ ⁻ 'Liquid Extraction with Weak Hydroxy Acids. Environmental Science & En	10.0	28
97	Crystallographic Evidence for Oxygen Acceptor Directionality in Oxyanion Hydrogen Bonds. Journal of the American Chemical Society, 2002, 124, 182-183.	13.7	59
98	Solvation of Calix[4] arene-bis-crown-6 Molecules. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2002, 42, 241-245.	1.6	5
99	Synthesis, Structure, and Extraction Properties of paco-Calix[4] arene Crown-6 Ethers. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2002, 43, 55-64.	1.6	3
100	Novel Approach to Sodium Hydroxide Separation:Â Synergistic Pseudo-Hydroxide Extraction by a Fluorinated Alcohol and Cage-Functionalized Crown Ethers. Journal of the American Chemical Society, 2001, 123, 12099-12100.	13.7	32
101	Regeneration of Perchlorate (ClO4-)-Loaded Anion Exchange Resins by a Novel Tetrachloroferrate (FeCl4-) Displacement Technique. Environmental Science & Environmental Science & 2001, 35, 3363-3368.	10.0	124
102	SOLVATOCHROMIC SOLVENT POLARITY MEASUREMENTS OF ALCOHOL SOLVENT MODIFIERS AND CORRELATION WITH CESIUM EXTRACTION STRENGTH1â€. Solvent Extraction and Ion Exchange, 2001, 19, 1037-1058.	2.0	29
103	Attenuation of Hofmeister bias in ion-pair extraction by a disulfonamide anion host used in strikingly effective synergistic combination with a calix-crown Cs+ host. Chemical Communications, 2001, , 1620-1621.	4.1	51
104	Synthesis, structure, and extraction behavior of 4,5′,4″,5′-tetra-tert-butyltetrabenzo-24-crown-8 â€â€¡. Perkin Transactions II RSC, 2001, , 808-814.	1.1	5
105	DEVELOPMENT OF A SOLVENT EXTRACTION PROCESS FOR CESIUM REMOVAL FROM SRS TANK WASTE. Separation Science and Technology, 2001, 36, 743-766.	2.5	52
106	LIQUID–LIQUID EQUILIBRIUM ANALYSIS IN PERSPECTIVE II. COMPLETE MODEL OF WATER, NITRIC ACID, AND URANYL NITRATE EXTRACTION BY DI-2-ETHYLHEXYL SULFOXIDE IN DODECANE. Solvent Extraction and Ion Exchange, 2001, 19, 757-790.	2.0	17
107	Binding Cesium Ions with Nucleosides: Templated Self-Assembly of Isoguanosine Pentamers. Angewandte Chemie - International Edition, 2000, 39, 1283-1285.	13.8	65
108	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2000, 36, 21-37.	1.6	84

#	Article	IF	CITATIONS
109	Development of Process Chemistry for the Removal of Cesium from Acidic Nuclear Waste by Calix[4]arene-crown-6 Ethers. ACS Symposium Series, 2000, , 26-44.	0.5	32
110	Benzyl Phenol Derivatives: Extraction Properties of Calixarene Fragments. ACS Symposium Series, 2000, , 86-106.	0.5	4
111	Development of Novel Bifunctional Anion-Exchange Resins with Improved Selectivity for Pertechnetate Sorption from Contaminated Groundwater. Environmental Science & Emp; Technology, 2000, 34, 1075-1080.	10.0	125
112	A ROBUST ALKALINE-SIDE CSEX SOLVENT SUITABLE FOR REMOVING CESIUM FROM SAVANNAH RIVER HIGH LEVEL WASTE#. Solvent Extraction and Ion Exchange, 2000, 18, 1079-1107.	2.0	109
113	The Design of Selective Resins for the Removal of Pertechnetate and Perchlorate from Groundwater. , 2000, , 155-164.		12
114	Use of Cage-Functionalized Macrocycles and Fluorinated Alcohols in the Liquid—Liquid Extraction of NaOH and Other Sodium Salts. ACS Symposium Series, 2000, , 114-132.	0.5	10
115	Novel dual-host approach in ion pair extraction: a simple tripodal nitrate host facilitates CsNO3 transfer to 1,2-dichloroethane by a large crown ether. Chemical Communications, 2000, , 187-188.	4.1	38
116	Enhancement of CsNO3Extraction in 1,2-Dichloroethane by Tris(2-aminoethyl)amine Triamide Derivatives via a Dual-Host Strategy. Analytical Chemistry, 2000, 72, 5258-5264.	6.5	64
117	Development of Bifunctional Anion-Exchange Resins with Improved Selectivity and Sorptive Kinetics for Pertechnetate:Â Batch-Equilibrium Experiments. Environmental Science & E	10.0	122
118	FUNDAMENTAL INVESTIGATIONS OF SEPARATIONS SCIENCE FOR RADIOACTIVE MATERIALS. Solvent Extraction and Ion Exchange, 2000, 18, 605-631.	2.0	57
119	Prediction of the carrier-mediated cation flux through polymer inclusion membranes via fundamental thermodynamic quantities: complexation study of bis(dodecyloxy)calix[4]arene-crown-6 with alkali metal cations. Physical Chemistry Chemical Physics, 2000, 2, 1481-1491.	2.8	30
120	A Surprising Hostâ^'Guest Relationship between 1,2-Dichloroethane and the Cesium Complex of Tetrabenzo-24-crown-8. Journal of the American Chemical Society, 2000, 122, 554-562.	13.7	60
121	SURVEYING THE EXTRACTION OF CESIUM NITRATE BY 1,3-ALTERNATECALIX[4]ARENE CROWN-6 ETHERS IN 1,2-DICHLOROETHANE. Solvent Extraction and Ion Exchange, 1999, 17, 1445-1459.	2.0	88
122	1,2-Bis[2-(pyridin-2-yloxy)ethoxy]benzene. Acta Crystallographica Section C: Crystal Structure Communications, 1999, 55, 618-620.	0.4	0
123	Cesium Recognition by Supramolecular Assemblies of 2-Benzylphenol and 2-Benzylphenolate. Structural Chemistry, 1999, 10, 187-203.	2.0	20
124	Dideoxygenated calix[4]arene crown-6 ethers enhanced selectivity for caesium over potassium and rubidium. Chemical Communications, 1999, , 1751-1752.	4.1	43
125	DEVELOPING AND TESTING AN ALKALINE-SIDE SOLVENT EXTRACTION PROCESS FOR TECHNETIUM SEPARATION FROM TANK WASTE. Separation Science and Technology, 1999, 34, 1043-1068.	2.5	20
126	Ligand Design for Small Cations: The Li+/14-Crown-4 System. ACS Symposium Series, 1999, , 114-132.	0.5	16

#	Article	IF	CITATIONS
127	COMPARISON OF THE LIPOPHILIC REDOX-RECYCLABLE EXTRACTANT[Fe(Î-(sup) 5 < sup) - C < sub) 5 < sub) + H < sub) 3 < sub) (s-C < sub) 7 < sub) + H < sub) 15 < sub) 2 < sub) WITH [N(n-C < sub) 7 < sub) + H < sub) 15 < sub) < sub) 4 < sub) [NO < sub) 3 < sub) FOR LIQUID-LIQUID ANION-EXCHANGE OF AQUEOUS < sup) 99 < sup) TCO < sub) 4 < sub) < sup) â° < sup). Solvent Extraction and	ub>) _{ 2.0}	2][5
128	Rapid and selective redox-recyclable anion-exchange materials containing polyalkylated ferricenium anion-exchange sites. Inorganic Chemistry Communication, 1998, 1, 435-438.	3.9	8
129	Applicability of a Calixarene-Crown Compound for the Removal of Cesium from Alkaline Tank Waste. Radiochimica Acta, 1997, 76, 103-108.	1.2	72
130	Ion-Pair Extraction of Alkali Mental Nitrate Salts by Lipophilic, Benzo-Substituted 24-Crown-8 Ethers. Separation Science and Technology, 1997, 32, 275-284.	2.5	17
131	Solubility Parameters and the Distribution of lons to Nonaqueous Solvents. Journal of Physical Chemistry B, 1997, 101, 6566-6574.	2.6	17
132	Prediction of Complexation Properties of Crown Ethers Using Computational Neural Networks. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1997, 27, 201-213.	1.6	19
133	Equilibria and Speciation in the Solvent Extraction of Lithium Chloride by Nonamethyl-14-Crown-4 Ether in 1-Octanol. The Journal of Physical Chemistry, 1996, 100, 9500-9505.	2.9	11
134	RING-SIZE AND SUBSTITUENT EFFECTS IN THE SOLVENT EXTRACTION OF ALKALI METAL NITRATES BY CROWN ETHERS IN 1,2-DICHLOROETHANE AND 1 -OCTANOL. Solvent Extraction and Ion Exchange, 1996, 14, 995-1015.	2.0	40
135	PHASE VOLUME CHANGES ACCOMPANYING WATER EXTRACTION FROM AQUEOUS ELECTROLYTE SOLUTIONS BY 1-OCTANOL. Solvent Extraction and Ion Exchange, 1995, 13, 243-252.	2.0	6
136	Comprehensive Equilibrium Analysis of the Complexation of Cu(II) by Tetrathia-14-crown-4 in a Synergistic Extraction System Employing Didodecylnaphthalene Sulfonic Acid. Separation Science and Technology, 1995, 30, 1047-1069.	2.5	10
137	Extraction of Alkali Metal Cations by Lipophilic Dibenzo-14-crown-4-carboxylic Acids. Separation Science and Technology, 1995, 30, 1157-1168.	2.5	8
138	TiO2 mediated photooxidation of trichloroethylene and toluene dissolved in fluorocarbon solvents. Chemosphere, 1995, 31, 3575-3584.	8.2	5
139	Complexation of Manganese(II) by Cyclohexano-15-crown-5 in Propylene Carbonate: Calorimetric and X-ray Crystallographic Investigation. Inorganic Chemistry, 1995, 34, 209-213.	4.0	12
140	Equilibrium aspects of the extraction of caesium nitrate by dicyclohexano-21-crown-7, dibenzo-21-crown-7 and bis-[tert-alkylbenzo]-21-crown-7 in 1,2-dichloroethane. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 4215.	1.7	58
141	A facile synthesis and X-ray structure determination of the first triptycenocrown ethers. Tetrahedron Letters, 1995, 36, 8163-8166.	1.4	4
142	Dimerization behavior of substituted dibenzo-14-crown-4 alcohols studied by NMR spectroscopy. Supramolecular Chemistry, 1994, 3, 219-222.	1.2	2
143	Synergistic complexation of metal ions with bifunctional interpenetrating polymer networks. Reactive & Functional Polymers, 1994, 24, 35-39.	0.8	6
144	An efficient synthesis of lithium-selective extractants: Tertiary-alkyl-14-crown-4 ethers. Tetrahedron Letters, 1993, 34, 5373-5376.	1.4	26

#	Article	IF	Citations
145	Extraction of copper(II) from sulfuric acid by macrocycle-synergized cation exchange: Comparing a novel impregnated resin with its solvent-extraction analog. Analytical Chemistry, 1993, 65, 3389-3395.	6.5	27
146	Alkylated Lariat Ethers as Solvent Extraction Reagents: Surveying the Extraction of Alkali Metals by Bis- <i><i i="">>-octylbenzo-14-crown-4-acetic Acid by Use of Potentiometric Two-Phase Titration. Separation Science and Technology, 1993, 28, 1-23.</i></i>	2.5	12
147	Equilibrium Analysis of Aggregation Behavior in the Solvent Extraction of Cu(II) from Sulfuric Acid by Didodecylnaphthalene Sulfonic Acid. Separation Science and Technology, 1993, 28, 81-113.	2.5	16
148	EXTRACTION OF Mn(II) FROM NITRIC ACID BY CROWN ETHER-SYNERGIZED CATION EXCHANGE EXTENDED EQUILIBRIUM AND INFRARED ANALYSIS*. Solvent Extraction and Ion Exchange, 1993, 11, 889-921.	2.0	5
149	Ion interaction model applied to the cupric sulfate-sulfuric acid-water system at 25.degree.C. The Journal of Physical Chemistry, 1993, 97, 12343-12348.	2.9	26
150	EXTRACTION OF ZINC(II) ION BY DIDODECYLNAPHTHALENESULFONIC ACID (HDDNS) IN CARBON TETRACHLORIDE: THE ROLE OF AGGREGATION. Solvent Extraction and Ion Exchange, 1991, 9, 155-176.	2.0	13
151	ON THE ORIGIN OF HAZE IN EXTRACTION SOLVENTS: DILUTION-INDUCED SUPERSATURATION OF WATER*. Solvent Extraction and Ion Exchange, 1991, 9, 277-288.	2.0	O
152	Interfacial precipitates containing dodecamolybdophosphate and dodecamolybdoarsenate anions in tertiary amine solvent extraction. Hydrometallurgy, 1991, 27, 113-122.	4.3	2
153	LIQUID-LIQUID EQUILIBRIUM ANALYSIS IN PERSPECTIVE.PART 1. SLOPE ANALYSIS OF THE EXTRACTION OF URANYL NITRATE FROM NITRIC ACID BY DI-2-ETHYLHEXYLSULFOXIDE. Solvent Extraction and Ion Exchange, 1991, 9, 833-864.	2.0	23
154	Hydration of 18-crown-6 in carbon tetrachloride: infrared spectral evidence for an equilibrium between monodentate and bidentate forms of bound water in the 1:1 crown-water adduct. The Journal of Physical Chemistry, 1990, 94, 5230-5233.	2.9	38
155	FTIR Spectroscopic Investigations of the Complexation of t-Butylcyclohexano-15-Crown-5 with Divalent Transition Metal Ions. Journal of Coordination Chemistry, 1990, 22, 331-336.	2.2	6
156	EXTRACTION OP MANGANESE(II) BT MIXTURES OP DIDODECYLNAPHTHALENESOLFONIC ACID AND r-BUTYL-CYCLOHEXANO-15-CROWN-5: SPECTRAL EVIDENCE FOR THE FORMATION OF A MANGANESE(II) - CROWN ETHER COMPLEX. Solvent Extraction and Ion Exchange, 1990, 8, 457-475.	2.0	10
157	SXLSQA, A Computer Program for Including Both Complex Formation and Activity Effects in the Interpretation of Solvent Extraction Data. Separation Science and Technology, 1990, 25, 1675-1688.	2.5	45
158	Synthesis of a more stable osmium ammine electron-dense DNA stain Journal of Histochemistry and Cytochemistry, 1989, 37, 395-398.	2.5	66
159	Preparation and properties of the nitrido-bridged osmium(IV) binuclear complexes [OsIV2N(NH3)10-nCln]Cl5-n (n = 2, 3). Inorganic Chemistry, 1989, 28, 4648-4650.	4.0	16
160	TRIALKYLAMMONIUM MIXED SALTS IN AMINE EXTRACTION SYSTEMS. INFRARED STUDY OF THE SALTS (R ₃ NH) ₃ [PMO ₁₂ O ₄₀] AND (R ₃ NH) Cl AND MIXED SALT (R ₃ NH) ₃ [PMO ₁₂ O ₄₀] 3(R ₃ NH) Cl. Solvent Extraction and Ion Exchange, 1988, 6, 1-37.	2.0	7
161	Selective Extraction of Cu2+ and Ag+ Ions from Sulfuric Acid by Synergistic Combinations of Tetradentate Thia Macrocycles with Dioodecylnaphthalene Sulfonic Acid. Separation Science and Technology, 1988, 23, 1325-1344.	2.5	11
162	HYDRATION AND AGGREGATION NEUTRAL OXYGEN-DONOR EXTRACTANTS HYDRATION AND AGGREGATION OF MONOFUNCTIONAL SULFOXIDE AND OTHER NEUTRAL OXYGEN-DONOR EXTRACTANTS: THE D1(2-ETHYLHEXYL) SULFOXIDE, DODECANE, WATER SYSTEM. Solvent Extraction and Ion Exchange, 1988, 6, 785-817.	2.0	14

#	Article	IF	CITATIONS
163	ESTIMATING ACTIVITY AND OSMOTIC COEFFICIENTS IN UO ₂ (NO ₃) ₂ +HNO ₃ -NaNO ₃ MIXTURES. Solvent Extraction and Ion Exchange, 1988, 6, 675-697.	2.0	11
164	Alkane-Insoluble Trialkylammonium Double Salts Involving the Dodecamolybdophosphate Anion. II. Effect of Amine Structure on Third-Phase Formation. Separation Science and Technology, 1987, 22, 417-445.	2.5	8
165	SPECTRAL STUDIES AND EQUILIBRIUM ANALYSIS OF THE DIDODECYLNAPHTHALENE SULFONIC ACID, DICYCLOHEXANO-18-CROWN-6, Sr2+EXTRACTION SYSTEM. Solvent Extraction and Ion Exchange, 1987, 5, 717-738.	2.0	19
166	ALKANE-INSOLUBLE TRIALKYLAMMONIUM DOUBLE SALTS INVOLVING THE DODECAMOLYBDOPHOSPHATE ANION. III. NATURE OF A LIQUID THIRD PHASE. Solvent Extraction and Ion Exchange, 1987, 5, 195-203.	2.0	6
167	COMPLEXATION OF STRONTIUM IN THE SYNERGISTIC EXTRACTION SYSTEM DICYCLOHEXANO-18-CROWN-6, VERSATIC ACID, CARBON TETRACHLORIDE. Solvent Extraction and Ion Exchange, 1986, 4, 83-93.	2.0	24
168	Alkane-insoluble trialkylammonium double salts involving the dodecamolybdophosphate anion. I. Model studies using trioctylamine in dodecanol-modified nonane. Hydrometallurgy, 1986, 16, 177-195.	4.3	9
169	SELECTIVITY IN SOLVENT EXTRACTION OF METAL IONS BY ORGANIC CATION EXCHANGERS SYNERGIZED BY MACROCYCLES: FACTORS RELATING TO MACROCYCLE SIZE AND STRUCTURE. Solvent Extraction and Ion Exchange, 1986, 4, 217-236.	2.0	77
170	Novel electrocatalytic procedure for the oxidation of alcohols, aldehydes, cyclic ketones, and carbon-hydrogen bonds adjacent to olefinic or aromatic groups. Journal of Organic Chemistry, 1984, 49, 4972-4977.	3.2	88
171	Proton-coupled electron transfer between [Ru(bpy)2(py)OH2]2+ and [Ru(bpy)2(py)O]2+. A solvent isotope effect (kH2O/kD2O) of 16.1. Journal of the American Chemical Society, 1981, 103, 2897-2899.	13.7	95
172	Oxygen transfer in the oxidation of triphenylphosphine by (bpy)2pyRuO2+. Inorganic Chemistry, 1981, 20, 1475-1480.	4.0	92
173	Properties of the oxo/aqua system (bpy)2(py)RuO2+/(bpy)2(py)Ru(OH2)2+. Inorganic Chemistry, 1981, 20, 436-444.	4.0	182
174	Chemically catalyzed net electrochemical oxidation of alcohols, aldehydes, and unsaturated hydrocarbons using the system (trpy)(bpy)Ru(OH2)2+/(trpy)(bpy)RuO2+. Journal of the American Chemical Society, 1980, 102, 2310-2312.	13.7	158
175	Reduction of nitrate ion by (bpy)2pyRu(OH2)2+. Journal of the American Chemical Society, 1979, 101, 1326-1328.	13.7	19
176	Oxobis(2,2'-bipyridine)pyridineruthenium(IV) ion, [(bpy)2(py)Ru:O]2+. Journal of the American Chemical Society, 1978, 100, 3601-3603.	13.7	116