Jizhen Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11895786/publications.pdf

Version: 2024-02-01

687363 642732 23 539 13 23 citations h-index g-index papers 23 23 23 366 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Parametric study on dual-fuel ignition characteristics under marine engine-relevant conditions. Fuel, 2022, 311, 122611.	6.4	3
2	Construction of a skeletal multi-component diesel surrogate model by integrating chemical lumping and genetic algorithm. Fuel, 2022, 313, 122711.	6.4	10
3	An experimental and kinetic modeling study of gas-phase autoignition of n-Pentadecane at low-to-high temperatures and elevated pressures. Fuel, 2021, 287, 119558.	6.4	2
4	An experimental and kinetic modeling study of a four-component surrogate fuel for RP-3 kerosene. Proceedings of the Combustion Institute, 2021, 38, 555-563.	3.9	15
5	Impact of small-amount diesel addition on methane ignition behind reflected shock waves: Experiments and modeling. Fuel, 2021, 288, 119672.	6.4	3
6	Experimental and modeling study of the autoignition for diesel and n-alcohol blends from ethanol to n-pentanol in shock tube and rapid compression machine. Combustion and Flame, 2021, 227, 296-308.	5.2	17
7	Autoignition behavior of methanol/diesel mixtures: Experiments and kinetic modeling. Combustion and Flame, 2021, 228, 1-12.	5.2	27
8	An experimental and modeling study of autoignition characteristics of two real low-octane gasoline fuels in a heated rapid compression machine at elevated pressures. Fuel, 2021, 295, 120645.	6.4	7
9	Ignition delay time measurements and kinetic modeling of methane/diesel mixtures at elevated pressures. Combustion and Flame, 2021, 229, 111390.	5.2	13
10	An experimental study of n-dodecane and the development of an improved kinetic model. Combustion and Flame, 2020, 212, 388-402.	5.2	24
11	The autoignition of Heptamethylnonane at moderate-to-high temperatures and elevated pressures: Shock tube study and improved chemical kinetic model. Fuel, 2020, 281, 118787.	6.4	8
12	Low-temperature auto-ignition characteristics of NH3/diesel binary fuel: Ignition delay time measurement and kinetic analysis. Fuel, 2020, 281, 118761.	6.4	60
13	The experimental study of autoignition of tetralin at intermediate-to-high temperatures. Fuel, 2020, 266, 117081.	6.4	10
14	Surrogate fuels for RP-3 kerosene formulated by emulating molecular structures, functional groups, physical and chemical properties. Combustion and Flame, 2019, 208, 388-401.	5.2	48
15	Development and validation of a reduced multi-component mechanism for diesel engine application. Applied Energy, 2019, 254, 113641.	10.1	12
16	Experimental and numerical study of pre-injection effects on diesel-n-butanol blends combustion. Applied Energy, 2019, 249, 377-391.	10.1	27
17	Construction of a Reduced PODE ₃ /Nature Gas Dual-Fuel Mechanism under Enginelike Conditions. Energy & Engine Reduced PODE _{33, 3504-3517.}	5.1	11
18	Development of a new reduced diesel/natural gas mechanism for dual-fuel engine combustion and emission prediction. Fuel, 2019, 236, 30-42.	6.4	62

#	Article	IF	CITATION
19	Experimental and numerical study of multiple injection effects on combustion and emission characteristics of natural gas–diesel dual-fuel engine. Energy Conversion and Management, 2019, 183, 84-96.	9.2	78
20	Effect of intake oxygen concentration on diesel–n-butanol blending combustion: An experimental and numerical study at low engine load. Energy Conversion and Management, 2018, 165, 53-65.	9.2	32
21	Development of a reduced n-heptane-n-butylbenzene-polycyclic aromatic hydrocarbon (PAH) mechanism for engine combustion simulation and soot prediction. Energy, 2018, 165, 90-105.	8.8	23
22	Development and Validation of a New Reduced Diesel/ <i>n</i> -Pentanol Mechanism for Diesel Engine Applications. Energy & Engine 32, 9934-9948.	5.1	17
23	Development and validation of a new reduced diesel- n -butanol blends mechanism for engine applications. Energy Conversion and Management, 2017, 149, 553-563.	9.2	30