
## **Alex Hamilton**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1189466/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Charge-based quantum computing using single donors in semiconductors. Physical Review B, 2004, 69, .                                                                                              | 1.1 | 271       |
| 2  | Coherent electronic transfer in quantum dot systems using adiabatic passage. Physical Review B, 2004,<br>70, .                                                                                    | 1.1 | 247       |
| 3  | Metal-Insulator Transition atB=0in a Dilute Two Dimensional GaAs-AlGaAs Hole Gas. Physical Review<br>Letters, 1998, 80, 1292-1295.                                                                | 2.9 | 233       |
| 4  | Zero-Energy Modes from Coalescing Andreev States in a Two-Dimensional<br>Semiconductor-Superconductor Hybrid Platform. Physical Review Letters, 2017, 119, 176805.                                | 2.9 | 182       |
| 5  | A room-temperature ferroelectric semimetal. Science Advances, 2019, 5, eaax5080.                                                                                                                  | 4.7 | 176       |
| 6  | High-Temperature Superfluidity in Double-Bilayer Graphene. Physical Review Letters, 2013, 110, 146803.                                                                                            | 2.9 | 171       |
| 7  | Density-Dependent Spin Polarization in Ultra-Low-Disorder Quantum Wires. Physical Review Letters, 2002, 89, 246801.                                                                               | 2.9 | 150       |
| 8  | Toward Atomic-Scale Device Fabrication in Silicon Using Scanning Probe Microscopy. Nano Letters, 2004, 4, 1969-1973.                                                                              | 4.5 | 150       |
| 9  | Many-body spin-related phenomena in ultra low-disorder quantum wires. Physical Review B, 2001, 63, .                                                                                              | 1.1 | 139       |
| 10 | Antisymmetric magnetoresistance in van der Waals Fe <sub>3</sub> GeTe <sub>2</sub> /graphite/Fe<br><sub>3</sub> GeTe <sub>2</sub> trilayer heterostructures. Science Advances, 2019, 5, eaaw0409. | 4.7 | 119       |
| 11 | Realization of Atomically Controlled Dopant Devices in Silicon. Small, 2007, 3, 563-567.                                                                                                          | 5.2 | 108       |
| 12 | Velocity-modulation control of electron-wave propagation in graphene. Physical Review B, 2010, 81, .                                                                                              | 1.1 | 107       |
| 13 | Weak Localization, Hole-Hole Interactions, and the "Metal―Insulator Transition in Two Dimensions.<br>Physical Review Letters, 2000, 84, 2489-2492.                                                | 2.9 | 96        |
| 14 | Encapsulation of phosphorus dopants in silicon for the fabrication of a quantum computer. Applied Physics Letters, 2002, 81, 3197-3199.                                                           | 1.5 | 92        |
| 15 | Zeeman Splitting in Ballistic Hole Quantum Wires. Physical Review Letters, 2006, 97, 026403.                                                                                                      | 2.9 | 85        |
| 16 | Electrically detected magnetic resonance in ion-implanted Si:P nanostructures. Applied Physics<br>Letters, 2006, 89, 182115.                                                                      | 1.5 | 81        |
| 17 | Maximizing the Hilbert Space for a Finite Number of Distinguishable Quantum States. Physical Review<br>Letters, 2004, 92, 097901.                                                                 | 2.9 | 76        |
| 18 | Pauli Spin Blockade of Heavy Holes in a Silicon Double Quantum Dot. Nano Letters, 2015, 15, 7314-7318.                                                                                            | 4.5 | 68        |

| #  | Article                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Influence of doping density on electronic transport in degenerate Si:Pδ-doped layers. Physical Review B,<br>2006, 73, .                                        | 1.1 | 62        |
| 20 | Reentrant Insulator-Metal-Insulator Transition atB=0in a Two-Dimensional Hole Gas. Physical Review Letters, 1999, 82, 1542-1545.                               | 2.9 | 60        |
| 21 | Progress in silicon-based quantum computing. Philosophical Transactions Series A, Mathematical,<br>Physical, and Engineering Sciences, 2003, 361, 1451-1471.   | 1.6 | 60        |
| 22 | Spin-orbit interactions in inversion-asymmetric two-dimensional hole systems: A variational analysis.<br>Physical Review B, 2017, 95, .                        | 1.1 | 60        |
| 23 | Ballistic transport in induced one-dimensional hole systems. Applied Physics Letters, 2006, 89, 092105.                                                        | 1.5 | 55        |
| 24 | Magnetization Instability in a Two-Dimensional System. Physical Review Letters, 1997, 79, 4449-4452.                                                           | 2.9 | 51        |
| 25 | Scanning probe microscopy for silicon device fabrication. Molecular Simulation, 2005, 31, 505-515.                                                             | 0.9 | 50        |
| 26 | Theory of hole-spin qubits in strained germanium quantum dots. Physical Review B, 2021, 103, .                                                                 | 1.1 | 50        |
| 27 | Weak localization in high-quality two-dimensional systems. Physical Review B, 2004, 70, .                                                                      | 1.1 | 49        |
| 28 | Excitonic superfluidity and screening in electron-hole bilayer systems. Physical Review B, 2014, 89, .                                                         | 1.1 | 49        |
| 29 | Enhanced g factors of a one-dimensional hole gas with quantized conductance. Physical Review B, 1997, 55, R13409-R13412.                                       | 1.1 | 47        |
| 30 | Anisotropic Pauli Spin Blockade of Holes in a GaAs Double Quantum Dot. Nano Letters, 2016, 16,<br>7685-7689.                                                   | 4.5 | 47        |
| 31 | Strong and Tunable Spin–Orbit Coupling in a Two-Dimensional Hole Gas in Ionic-Liquid Gated Diamond<br>Devices. Nano Letters, 2016, 16, 3768-3773.              | 4.5 | 45        |
| 32 | Optimal operation points for ultrafast, highly coherent Ge hole spin-orbit qubits. Npj Quantum<br>Information, 2021, 7, .                                      | 2.8 | 45        |
| 33 | Effect of encapsulation temperature on Si:P δ-doped layers. Applied Physics Letters, 2004, 85, 4953-4955.                                                      | 1.5 | 44        |
| 34 | Conductance quantization and the 0.7×2e2â^•h conductance anomaly in one-dimensional hole systems.<br>Applied Physics Letters, 2006, 88, 012107.                | 1.5 | 42        |
| 35 | Spin and orbital structure of the first six holes in a silicon metal-oxide-semiconductor quantum dot.<br>Nature Communications, 2018, 9, 3255.                 | 5.8 | 42        |
| 36 | Frictional drag between parallel two-dimensional electron gases in a perpendicular magnetic field.<br>Journal of Physics Condensed Matter, 1996, 8, L557-L562. | 0.7 | 40        |

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Electron-electron interactions in highly disordered two-dimensional systems. Physical Review B, 2008, 77, .                                                                                    | 1.1 | 40        |
| 38 | Impact of long- and short-range disorder on the metallic behaviour of two-dimensional systems.<br>Nature Physics, 2008, 4, 55-59.                                                              | 6.5 | 39        |
| 39 | Spin–Orbit Interaction in a Two-Dimensional Hole Gas at the Surface of Hydrogenated Diamond. Nano<br>Letters, 2015, 15, 16-20.                                                                 | 4.5 | 39        |
| 40 | Fabrication and characterization of ambipolar devices on an undoped AlGaAs/GaAs heterostructure.<br>Applied Physics Letters, 2012, 100, .                                                      | 1.5 | 37        |
| 41 | Probing the Spin States of a Single Acceptor Atom. Nano Letters, 2014, 14, 1492-1496.                                                                                                          | 4.5 | 36        |
| 42 | Correlated charge detection for readout of a solid-state quantum computer. Applied Physics Letters, 2003, 82, 577-579.                                                                         | 1.5 | 35        |
| 43 | Role of background impurities in the single-particle relaxation lifetime of a two-dimensional electron<br>gas. Physical Review B, 2009, 80, .                                                  | 1.1 | 35        |
| 44 | Generating a Topological Anomalous Hall Effect in a Nonmagnetic Conductor: An In-Plane Magnetic<br>Field as a Direct Probe of the Berry Curvature. Physical Review Letters, 2021, 126, 256601. | 2.9 | 35        |
| 45 | One-dimensional conduction properties of highly phosphorus-doped planar nanowires patterned by scanning probe microscopy. Physical Review B, 2007, 76, .                                       | 1.1 | 33        |
| 46 | Quantum Anomalous Hall Effect in Magnetic Doped Topological Insulators and Ferromagnetic<br>Spinâ€Gapless Semiconductors—A Perspective Review. Small, 2020, 16, e1904322.                      | 5.2 | 33        |
| 47 | Backâ€gated splitâ€gate transistor: A oneâ€dimensional ballistic channel with variable Fermi energy. Applied<br>Physics Letters, 1992, 60, 2782-2784.                                          | 1.5 | 32        |
| 48 | Single-shot readout with the radio-frequency single-electron transistor in the presence of charge noise. Applied Physics Letters, 2005, 86, 143117.                                            | 1.5 | 32        |
| 49 | Electronic properties of atomically abrupt tunnel junctions in silicon. Physical Review B, 2007, 75, .                                                                                         | 1.1 | 31        |
| 50 | Fractional quantum Hall effect in bilayer two-dimensional hole-gas systems. Physical Review B, 1996,<br>54, R5259-R5262.                                                                       | 1.1 | 30        |
| 51 | Metallic Behavior in Dilute Two-Dimensional Hole Systems. Physical Review Letters, 2001, 87, 126802.                                                                                           | 2.9 | 30        |
| 52 | Fabrication of induced two-dimensional hole systems on (311)A GaAs. Journal of Applied Physics, 2006,<br>99, 023707.                                                                           | 1.1 | 30        |
| 53 | Observation of orientation- and <i>k</i> -dependent Zeeman spin-splitting in hole quantum wires on<br>(100)-oriented AlGaAs/GaAs heterostructures. New Journal of Physics, 2010, 12, 033043.   | 1.2 | 30        |
| 54 | Impact of Small-Angle Scattering on Ballistic Transport in Quantum Dots. Physical Review Letters,<br>2012, 108, 196807.                                                                        | 2.9 | 29        |

| #  | Article                                                                                                                                                                                                                           | IF                                     | CITATIONS  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------|
| 55 | Transport in disordered monolayer MoS <sub>2</sub> nanoflakes—evidence for inhomogeneous<br>charge transport. Nanotechnology, 2014, 25, 375201.                                                                                   | 1.3                                    | 29         |
| 56 | Spin blockade in hole quantum dots: Tuning exchange electrically and probing Zeeman interactions.<br>Physical Review B, 2017, 95, .                                                                                               | 1.1                                    | 29         |
| 57 | Geometric Control of Universal Hydrodynamic Flow in a Two-Dimensional Electron Fluid. Physical<br>Review X, 2021, 11, .                                                                                                           | 2.8                                    | 29         |
| 58 | Atomic-scale silicon device fabrication. International Journal of Nanotechnology, 2008, 5, 352.                                                                                                                                   | 0.1                                    | 28         |
| 59 | Observation of the Kondo Effect in a Spin-32Hole Quantum Dot. Physical Review Letters, 2011, 107, 076805.                                                                                                                         | 2.9                                    | 28         |
| 60 | Fabrication of high mobilityin situback-gated (311)A hole gas heterojunctions. Applied Physics Letters,<br>1997, 70, 2750-2752.                                                                                                   | 1.5                                    | 27         |
| 61 | 0.7 Structure and Zero Bias Anomaly in Ballistic Hole Quantum Wires. Physical Review Letters, 2008, 100, 016403.                                                                                                                  | 2.9                                    | 27         |
| 62 | Resistively Detected Nuclear Magnetic Resonance in n- and p-Type GaAs Quantum Point Contacts. Nano<br>Letters, 2011, 11, 3147-3150.                                                                                               | 4.5                                    | 27         |
| 63 | Electrical Control of the Zeeman Spin Splitting in Two-Dimensional Hole Systems. Physical Review<br>Letters, 2018, 121, 077701.                                                                                                   | 2.9                                    | 27         |
| 64 | Strong Spin-Orbit Contribution to the Hall Coefficient of Two-Dimensional Hole Systems. Physical Review Letters, 2018, 121, 087701.                                                                                               | 2.9                                    | 27         |
| 65 | The use of etched registration markers to make four-terminal electrical contacts to STM-patterned nanostructures. Nanotechnology, 2005, 16, 2446-2449.                                                                            | 1.3                                    | 26         |
| 66 | Controlled single electron transfer between Si:P dots. Applied Physics Letters, 2006, 88, 192101.                                                                                                                                 | 1.5                                    | 25         |
| 67 | Enhanced Zeeman splitting in Ga0.25In0.75As quantum point contacts. Applied Physics Letters, 2008, 93, 012105.                                                                                                                    | 1.5                                    | 25         |
| 68 | Fabrication and characterization of an induced GaAs single hole transistor. Applied Physics Letters, 2010, 96, 092103.                                                                                                            | 1.5                                    | 25         |
| 69 | Narrow, highly P-doped, planar wires in silicon created by scanning probe microscopy.<br>Nanotechnology, 2007, 18, 044023.                                                                                                        | 1.3                                    | 24         |
| 70 | Thickness-dependent electronic structure in <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"&gt; <mml:msub> <mml:mi>WTe</mml:mi> <mml:mn>2thin films. Physical Review B, 2018, 98, .</mml:mn></mml:msub></mml:math<br> | าl:m <b>ธ.ม</b> <td>ml:n2xsub&gt;</td> | ml:n2xsub> |
| 71 | AlGaAs/GaAs single electron transistor fabricated without modulation doping. Applied Physics<br>Letters, 2010, 96, 112104.                                                                                                        | 1.5                                    | 23         |
| 72 | Single hole transport in a silicon metal-oxide-semiconductor quantum dot. Applied Physics Letters, 2013, 103, .                                                                                                                   | 1.5                                    | 23         |

| #  | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Electrical control of the <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"&gt;<mml:mi>g</mml:mi> tensor of the<br/>first hole in a silicon MOS quantum dot. Physical Review B, 2021, 104, .</mml:math<br>                                         | 1.1 | 23        |
| 74 | Electrical readout of a spin qubit without double occupancy. Physical Review B, 2005, 71, .                                                                                                                                                                  | 1.1 | 22        |
| 75 | Extreme Sensitivity of the Spin-Splitting and 0.7 Anomaly to Confining Potential in One-Dimensional<br>Nanoelectronic Devices. Nano Letters, 2012, 12, 4495-4502.                                                                                            | 4.5 | 22        |
| 76 | Lightly strained germanium quantum wells with hole mobility exceeding one million. Applied Physics<br>Letters, 2022, 120, .                                                                                                                                  | 1.5 | 22        |
| 77 | Observing sub-microsecond telegraph noise with the radio frequency single electron transistor.<br>Journal of Applied Physics, 2004, 96, 6827-6830.                                                                                                           | 1.1 | 21        |
| 78 | The interplay between one-dimensional confinement and two-dimensional crystallographic anisotropy effects in ballistic hole quantum wires. New Journal of Physics, 2009, 11, 043018.                                                                         | 1.2 | 21        |
| 79 | Influence of surface states on quantum and transport lifetimes in high-quality undoped heterostructures. Physical Review B, 2013, 87, .                                                                                                                      | 1.1 | 21        |
| 80 | Using a Tunable Quantum Wire To Measure the Large out-of-Plane Spin Splitting of Quasi<br>Two-Dimensional Holes in a GaAs Nanostructure. Nano Letters, 2013, 13, 148-152.                                                                                    | 4.5 | 21        |
| 81 | Bottom-up assembly of metallic germanium. Scientific Reports, 2015, 5, 12948.                                                                                                                                                                                | 1.6 | 21        |
| 82 | Experimental conditions for the observation of electron-hole superfluidity in GaAs heterostructures. Physical Review B, 2020, 101, .                                                                                                                         | 1.1 | 21        |
| 83 | Near-Field Excited Archimedean-like Tiling Patterns in Phonon-Polaritonic Crystals. ACS Nano, 2021, 15, 9134-9142.                                                                                                                                           | 7.3 | 21        |
| 84 | Piezoelectric rotator for studying quantum effects in semiconductor nanostructures at high magnetic fields and low temperatures. Review of Scientific Instruments, 2010, 81, 113905.                                                                         | 0.6 | 20        |
| 85 | Development and operation of the twin radio frequency single electron transistor for cross-correlated charge detection. Journal of Applied Physics, 2004, 96, 4508-4513.                                                                                     | 1.1 | 19        |
| 86 | Field-orientation dependence of the Zeeman spin splitting in (In,Ga)As quantum point contacts.<br>Physical Review B, 2010, 81, .                                                                                                                             | 1.1 | 18        |
| 87 | Mechanisms for Strong Anisotropy of In-Plane <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"&gt;<mml:mi>g</mml:mi><br/>-Factors in Hole Based Quantum Point Contacts. Physical Review Letters, 2017, 119, 116803.</mml:math<br> | 2.9 | 18        |
| 88 | Detection and Control of Spin-Orbit Interactions in a GaAs Hole Quantum Point Contact. Physical<br>Review Letters, 2017, 118, 146801.                                                                                                                        | 2.9 | 18        |
| 89 | G-factor and well width variations for the two-dimensional hole gas in surface conducting diamond.<br>Applied Physics Letters, 2018, 112, .                                                                                                                  | 1.5 | 18        |
| 90 | Electrical Characterization of Ordered Si:P Dopant Arrays. IEEE Nanotechnology Magazine, 2007, 6, 213-217.                                                                                                                                                   | 1.1 | 17        |

| #   | Article                                                                                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Stacking of 2D Electron Gases in Ge Probed at the Atomic Level and Its Correlation to Low-Temperature Magnetotransport. Nano Letters, 2012, 12, 4953-4959.                                                                                                                                                                                        | 4.5 | 17        |
| 92  | Ultra-shallow quantum dots in an undoped GaAs/AlGaAs two-dimensional electron gas. Applied<br>Physics Letters, 2013, 102, 103507.                                                                                                                                                                                                                 | 1.5 | 17        |
| 93  | Spin–orbit coupling in silicon for electrons bound to donors. Npj Quantum Information, 2018, 4, .                                                                                                                                                                                                                                                 | 2.8 | 17        |
| 94  | Evolution of the bilayerÎ $\frac{1}{2}$ =1quantum Hall state under charge imbalance. Physical Review B, 2005, 71, .                                                                                                                                                                                                                               | 1.1 | 15        |
| 95  | Chasing the Exciton Condensate. Physics Magazine, 0, 9, .                                                                                                                                                                                                                                                                                         | 0.1 | 15        |
| 96  | Effect of screening long-range Coulomb interactions on the metallic behavior in two-dimensional hole systems. Physical Review B, 2008, 77, .                                                                                                                                                                                                      | 1.1 | 14        |
| 97  | Compressibility Measurements of Quasi-One-Dimensional Quantum Wires. Physical Review Letters, 2011, 107, 126801.                                                                                                                                                                                                                                  | 2.9 | 14        |
| 98  | Manifestation of a non-Abelian Berry phase in a <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"&gt;<mml:mi>p</mml:mi>-type<br/>semiconductor system. Physical Review B, 2016, 93, .</mml:math<br>                                                                                                                                     | 1.1 | 14        |
| 99  | The electronic structure of a back-gated high electron mobility transistor. Semiconductor Science and Technology, 1991, 6, 201-207.                                                                                                                                                                                                               | 1.0 | 13        |
| 100 | Decoding the ternary Golay code. IEEE Transactions on Information Theory, 1993, 39, 1043-1046.                                                                                                                                                                                                                                                    | 1.5 | 13        |
| 101 | Localisation and the metal–insulator transition in two dimensions. Physica B: Condensed Matter, 2001, 296, 21-31.                                                                                                                                                                                                                                 | 1.3 | 13        |
| 102 | Charge shelving and bias spectroscopy for the readout of a charge qubit on the basis of superposition states. Physical Review B, 2004, 70, .                                                                                                                                                                                                      | 1.1 | 13        |
| 103 | Donor activation and damage in Si–SiO2from low-dose, low-energy ion implantation studied via<br>electrical transport in MOSFETs. Semiconductor Science and Technology 2005, 20, 363-368<br>Continement properties of a <mmi:math <="" td="" xmins:mmi="http://www.W3.org/1998/Math/MathML"><td>1.0</td><td>13</td></mmi:math>                     | 1.0 | 13        |
| 104 | display="inline"> <mml:mrow><mml:msub><mml:mi<br>mathvariant="normal"&gt;Ga<mml:mn>0.25</mml:mn></mml:mi<br></mml:msub><mml:msub><mml:mi<br>mathvariant="normal"&gt;In<mml:mn>0.75</mml:mn></mml:mi<br></mml:msub><mml:mi<br>mathvariant="normal"&gt;As<mml:mo>â^</mml:mo><mml:mi< td=""><td>1.1</td><td>13</td></mml:mi<></mml:mi<br></mml:mrow> | 1.1 | 13        |
| 105 | mathvariant="normal">In <mml:mi<br>mathvariant="normal"&gt;PGround-plane screening of Coulomb interactions in two-dimensional systems: How effectively can<br/>one two-dimensional system screen interactions in another. Physical Review B, 2009, 80, .</mml:mi<br>                                                                              | 1.1 | 13        |
| 106 | Transition from one- to two-subband occupancy in the 2DEG of back-gated modulation-doped<br>GaAs-AlxGa1â^'xAs heterostructures. Physical Review B, 1995, 51, 17600-17604.                                                                                                                                                                         | 1.1 | 12        |
| 107 | Measurements of a composite fermion split-gate device. Physical Review B, 1996, 53, R7596-R7598.                                                                                                                                                                                                                                                  | 1.1 | 12        |
| 108 | Radio-frequency reflectometry on large gated two-dimensional systems. Review of Scientific<br>Instruments, 2008, 79, 123901.                                                                                                                                                                                                                      | 0.6 | 12        |

| #   | Article                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Ohmic conduction of sub-10nm P-doped silicon nanowires at cryogenic temperatures. Applied Physics<br>Letters, 2008, 92, 052101.                                                                                                                                            | 1.5 | 12        |
| 110 | Origin of gate hysteresis in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"&gt;<mml:mi>p</mml:mi></mml:math> -type Si-doped AlGaAs/GaAs heterostructures.<br>Physical Review B, 2012, 86, .                                              | 1.1 | 12        |
| 111 | Scaling of the Kondo zero-bias peak in a hole quantum dot at finite temperatures. Physical Review B, 2013, 87, .                                                                                                                                                           | 1.1 | 12        |
| 112 | Electrical control of the sign of the <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"&gt;<mml:mi>g</mml:mi>factor in a GaAs<br/>hole quantum point contact. Physical Review B, 2016, 94, .</mml:math<br>                                                       | 1.1 | 12        |
| 113 | Is it the boundaries or disorder that dominates electron transport in semiconductor `billiards'?.<br>Fortschritte Der Physik, 2013, 61, 332-347.                                                                                                                           | 1.5 | 11        |
| 114 | <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>g</mml:mi></mml:math><br>-factor and well-width fluctuations as a function of carrier density in the two-dimensional hole<br>accumulation layer of transfer-doped diamond. Physical Review B, 2019, 99, . | 1.1 | 11        |
| 115 | The growth and characterisation of back-gated high mobility two-dimensional electron gas structures. Journal of Crystal Growth, 1991, 111, 300-304.                                                                                                                        | 0.7 | 10        |
| 116 | The fabrication of back-gated high electron mobility transistors — a novel approach using MBE regrowth on an in situ ion beam patterned epilayer. Journal of Crystal Growth, 1993, 127, 41-45.                                                                             | 0.7 | 10        |
| 117 | Interaction correction to the longitudinal conductivity and Hall resistivity in high-quality two-dimensional GaAs electron and hole systems. Physical Review B, 2005, 72, .                                                                                                | 1.1 | 10        |
| 118 | An improved process for fabricating high-mobility organic molecular crystal field-effect transistors.<br>Journal of Applied Physics, 2007, 102, 084511.                                                                                                                    | 1.1 | 10        |
| 119 | The 0.7 anomaly in one-dimensional hole quantum wires. Journal of Physics Condensed Matter, 2008, 20, 164205.                                                                                                                                                              | 0.7 | 10        |
| 120 | Dependence of the 0.7 anomaly on the curvature of the potential barrier in quantum wires. Physical Review B, 2015, 91, .                                                                                                                                                   | 1.1 | 10        |
| 121 | Quantum-dot cellular automata: introduction and experimental overview. , 0, , .                                                                                                                                                                                            |     | 9         |
| 122 | Single atom Si nanoelectronics using controlled single-ion implantation. Microelectronic Engineering, 2005, 78-79, 279-286.                                                                                                                                                | 1.1 | 9         |
| 123 | Noncollinear Paramagnetism of a GaAs Two-Dimensional Hole System. Physical Review Letters, 2014, 113, 236401.                                                                                                                                                              | 2.9 | 9         |
| 124 | Signatures of quantum mechanical Zeeman effect in classical transport due to topological properties of two-dimensional spin- 32 holes. Physical Review B, 2020, 101, .                                                                                                     | 1.1 | 9         |
| 125 | Electron–hole superfluidity in strained Si/Ge type II heterojunctions. Npj Quantum Materials, 2021, 6, .                                                                                                                                                                   | 1.8 | 9         |
| 126 | Modelling of electrostatic gate operations in the Kane solid state quantum computer.<br>Microelectronics Journal, 2002, 33, 1053-1058.                                                                                                                                     | 1.1 | 8         |

| #   | Article                                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Probing the sensitivity of electron wave interference to disorder-induced scattering in solid-state devices. Physical Review B, 2012, 85, .                                                                                                                                             | 1.1  | 8         |
| 128 | Multiband Mechanism for the Sign Reversal of Coulomb Drag Observed in Double Bilayer Graphene<br>Heterostructures. Physical Review Letters, 2018, 121, 036601.                                                                                                                          | 2.9  | 8         |
| 129 | Three-dimensional electron-hole superfluidity in a superlattice close to room temperature. Physical<br>Review B, 2020, 102, .                                                                                                                                                           | 1.1  | 8         |
| 130 | Anodic oxidation of epitaxial superconductor-semiconductor hybrids. Physical Review Materials, 2021, 5, .                                                                                                                                                                               | 0.9  | 8         |
| 131 | A self-aligned fabrication process for silicon quantum computer devices. Nanotechnology, 2002, 13, 686-690.                                                                                                                                                                             | 1.3  | 7         |
| 132 | The twin radio frequency single electron transistor for correlated charge detection on microsecond time-scales. Microelectronic Engineering, 2003, 67-68, 775-781.                                                                                                                      | 1.1  | 7         |
| 133 | A study of transport suppression in an undoped AlGaAs/GaAs quantum dot single-electron transistor.<br>Journal of Physics Condensed Matter, 2013, 25, 505302.                                                                                                                            | 0.7  | 7         |
| 134 | Radio-frequency reflectometry on an undoped AlGaAs/GaAs single electron transistor. Applied Physics<br>Letters, 2014, 104, 012114.                                                                                                                                                      | 1.5  | 7         |
| 135 | Hybrid architecture for shallow accumulation mode AlGaAs/GaAs heterostructures with epitaxial gates. Applied Physics Letters, 2015, 106, 012105.                                                                                                                                        | 1.5  | 7         |
| 136 | Spin-Momentum Locking Induced Anisotropic Magnetoresistance in Monolayer WTe <sub>2</sub> .<br>Nano Letters, 2021, 21, 9005-9011.                                                                                                                                                       | 4.5  | 7         |
| 137 | Optimizing topological switching in confined 2D-Xene nanoribbons via finite-size effects. Applied<br>Physics Reviews, 2022, 9, .                                                                                                                                                        | 5.5  | 7         |
| 138 | Ultrahigh vacuum in situ fabrication of three-dimensional semiconductor structures using a<br>combination of particle beams. Journal of Vacuum Science & Technology an Official Journal of the<br>American Vacuum Society B, Microelectronics Processing and Phenomena, 1992, 10, 2834. | 1.6  | 6         |
| 139 | Integer quantum Hall states in coupled double electron gas systems at mismatched carrier densities.<br>Journal of Physics Condensed Matter, 1996, 8, L311-L318.                                                                                                                         | 0.7  | 6         |
| 140 | Real metals, 2D or not 2D?. Nature, 1999, 400, 715-717.                                                                                                                                                                                                                                 | 13.7 | 6         |
| 141 | Uranium Superconductivity Redux. Journal of Superconductivity and Novel Magnetism, 2000, 13, 833-835.                                                                                                                                                                                   | 0.5  | 6         |
| 142 | Magnetic susceptibility of the normal-superconducting transition in high-purity single-crystalα-uranium. Physical Review B, 2002, 66, .                                                                                                                                                 | 1.1  | 6         |
| 143 | Double-island single-electron transistor for noise-suppressed detection of charge transfer.<br>Microelectronic Engineering, 2003, 67-68, 826-831.                                                                                                                                       | 1.1  | 6         |
| 144 | Current suppression in a double-island single-electron transistor for detection of degenerate charge configurations of a floating double-dot. Applied Physics Letters, 2003, 83, 4640-4642.                                                                                             | 1.5  | 6         |

| #   | Article                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Superconductivity in metal-mixed ion-implanted polymer films. Applied Physics Letters, 2006, 89, 152503.                                                                           | 1.5 | 6         |
| 146 | Use of low-temperature Hall effect to measure dopant activation: Role of electron-electron interactions. Physical Review B, 2007, 76, .                                            | 1.1 | 6         |
| 147 | Overlapping-gate architecture for silicon Hall bar field-effect transistors in the low electron density regime. Applied Physics Letters, 2010, 97, .                               | 1.5 | 6         |
| 148 | Fabrication and characterisation of gallium arsenide ambipolar quantum point contacts. Applied Physics Letters, 2015, 106, .                                                       | 1.5 | 6         |
| 149 | Using light and heat to controllably switch and reset disorder configuration in nanoscale devices.<br>Physical Review B, 2015, 91, .                                               | 1.1 | 6         |
| 150 | Two-dimensional lateral surface superlattices in GaAs heterostructures with independent control of carrier density and modulation potential. Applied Physics Letters, 2020, 117, . | 1.5 | 6         |
| 151 | New signatures of the spin gap in quantum point contacts. Nature Communications, 2021, 12, 5.                                                                                      | 5.8 | 6         |
| 152 | Gate voltage dependent Rashba spin splitting in hole transverse magnetic focusing. Physical Review B,<br>2022, 105, .                                                              | 1.1 | 6         |
| 153 | Measurements of a composite fermion split-gate. Surface Science, 1996, 361-362, 71-74.                                                                                             | 0.8 | 5         |
| 154 | Electrometry using the quantum Hall effect in a bilayer two-dimensional electron system. Applied Physics Letters, 2010, 96, 212102.                                                | 1.5 | 5         |
| 155 | Double-layer-gate architecture for few-hole GaAs quantum dots. Nanotechnology, 2016, 27, 334001.                                                                                   | 1.3 | 5         |
| 156 | Improving reproducibility of quantum devices with completely undoped architectures. Applied Physics<br>Letters, 2020, 117, .                                                       | 1.5 | 5         |
| 157 | Quasi-one-dimensional transport in semiconductor microstructures. Physica Scripta, 1992, T45, 200-205.                                                                             | 1.2 | 4         |
| 158 | Probing the band structure of a two-dimensional hole gas using a one-dimensional superlattice.<br>Physical Review B, 1996, 54, R14273-R14276.                                      | 1.1 | 4         |
| 159 | Dreams Versus Reality: Plenary Debate Session on Quantum Computing. Quantum Information Processing, 2003, 2, 449-472.                                                              | 1.0 | 4         |
| 160 | Anomalous transport in mesoscopic inhomogeneous two-dimensional electron systems at low<br>temperature. Physical Review B, 2010, 82, .                                             | 1.1 | 4         |
| 161 | Origin of the hysteresis in bilayer two-dimensional systems in the quantum Hall regime. Physical<br>Review B, 2010, 82, .                                                          | 1.1 | 4         |
| 162 | Landau level spin diode in a GaAs two dimensional hole system. New Journal of Physics, 2015, 17, 033035.                                                                           | 1.2 | 4         |

| #   | Article                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Metallic behaviour and localisation in 2D GaAs hole systems. Physica E: Low-Dimensional Systems and Nanostructures, 2001, 11, 161-166.                                                  | 1.3 | 3         |
| 164 | Single-electron transistor architectures for charge motion detection in solid-state quantum computer devices. Smart Materials and Structures, 2002, 11, 749-755.                        | 1.8 | 3         |
| 165 | The fate of quantum Hall extended states as B→0 and the possibility of a 2D metal. Physica E:<br>Low-Dimensional Systems and Nanostructures, 2002, 12, 646-649.                         | 1.3 | 3         |
| 166 | Scaling of coherent tunneling adiabatic passage in solid-state coherent quantum systems. , 2005, , .                                                                                    |     | 3         |
| 167 | The effect of temperature and gas flow on the physical vapour growth of mm-scale rubrene crystals for organic FETs. Proceedings of SPIE, 2007, , .                                      | 0.8 | 3         |
| 168 | Transverse magnetic focussing of heavy holes in a (100) GaAs quantum well. Semiconductor Science and Technology, 2015, 30, 102001.                                                      | 1.0 | 3         |
| 169 | Understanding the Role of Defective Phases on the Conductivity Behavior of Strained Epitaxial<br>LaNiO <sub>3</sub> Thin Films. ACS Applied Electronic Materials, 2022, 4, 1196-1205.   | 2.0 | 3         |
| 170 | A Highâ€Mobility Hole Bilayer in a Germanium Double Quantum Well. Advanced Quantum Technologies,<br>0, , 2100167.                                                                       | 1.8 | 3         |
| 171 | The growth of high mobility heterostructures on (311)B GaAs. Microelectronics Journal, 1995, 26, 897-902.                                                                               | 1.1 | 2         |
| 172 | Localisation in Strongly Interacting 2D GaAs Systems. Physica Status Solidi (B): Basic Research, 2002,<br>230, 81-87.                                                                   | 0.7 | 2         |
| 173 | Exchange-driven bilayer-to-monolayer charge transfer in an asymmetric double-quantum-well. Physica<br>E: Low-Dimensional Systems and Nanostructures, 2002, 12, 304-306.                 | 1.3 | 2         |
| 174 | Fabrication and characterization of a 2D hole system a in novel (311)A GaAs SISFET. Microelectronics<br>Journal, 2005, 36, 327-330.                                                     | 1.1 | 2         |
| 175 | Ballistic transport in one-dimensional bilayer hole systems. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 34, 550-552.                                                  | 1.3 | 2         |
| 176 | TUNNELING AND HOPPING BETWEEN DOMAINS IN THE METAL-INSULATOR TRANSITION IN TWO-DIMENSIONS.<br>International Journal of Modern Physics B, 2008, 22, 4565-4571.                           | 1.0 | 2         |
| 177 | Ballistic induced hole quantum wires fabricated on a (100)-oriented AlGaAs/GaAs heterostructure.<br>Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 1111-1113.         | 1.3 | 2         |
| 178 | Nonlinear spin filter for nonmagnetic materials at zero magnetic field. Physical Review B, 2020, 102, .                                                                                 | 1.1 | 2         |
| 179 | High electron mobility and low noise quantum point contacts in an ultra-shallow all-epitaxial metal gate GaAs/AlxGa1â^'xAs heterostructure. Applied Physics Letters, 2021, 119, 063105. | 1.5 | 2         |
| 180 | Influence of Inversion Symmetry on the Metallic Behaviour in a Dilute Two-dimensional Hole System.<br>Australian Journal of Physics, 2000, 53, 523.                                     | 0.6 | 2         |

| #   | Article                                                                                                                                                                                  | IF        | CITATIONS    |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|
| 181 | Effects of biased and unbiased illuminations on two-dimensional electron gases in dopant-free<br>GaAs/AlGaAs. Physical Review B, 2022, 105, .                                            | 1.1       | 2            |
| 182 | The physics and fabrication of in situ back-gated (311)A hole gas heterojunctions. Microelectronics<br>Journal, 1997, 28, 795-801.                                                       | 1.1       | 1            |
| 183 | Single electron devices for simulating read-out in a solid state quantum computer. Surface Science, 2003, 532-535, 1199-1203.                                                            | 0.8       | 1            |
| 184 | Stability of the bilayer ν=1 quantum Hall state under charge imbalance. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 22, 40-43.                                          | 1.3       | 1            |
| 185 | Nanofabrication of charge-based Si:P quantum computer devices using single-ion implantation. , 2005, ,                                                                                   |           | 1            |
| 186 | Single-electron transistor coupled to a silicon nano-MOSFET. , 2005, , .                                                                                                                 |           | 1            |
| 187 | Electric-field-induced charge noise in doped silicon: Ionization of phosphorus donors. Applied Physics<br>Letters, 2006, 88, 162117.                                                     | 1.5       | 1            |
| 188 | Atomically precise silicon device fabrication. , 2007, , .                                                                                                                               |           | 1            |
| 189 | Single particle and momentum relaxation times in two-dimensional electron systems (updated May 14,) Tj ETQq1                                                                             | 1 0.78431 | 14 rgBT /Ove |
| 190 | Anisotropic Zeeman Splitting In Ballistic One-Dimensional Hole Systems. AIP Conference Proceedings, 2007, , .                                                                            | 0.3       | 1            |
| 191 | Screening long-range Coulomb interactions in 2D hole systems using a bilayer heterostructure.<br>Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1700-1702.             | 1.3       | 1            |
| 192 | Quantum transport in one-dimensional GaAs hole systems. International Journal of Nanotechnology, 2008, 5, 318.                                                                           | 0.1       | 1            |
| 193 | Quantum tunnelling and hopping between metallic domains in disordered two-dimensional mesoscopic electron systems. Journal of Physics A: Mathematical and Theoretical, 2009, 42, 214012. | 0.7       | 1            |
| 194 | Radio-frequency reflectometry—A fast and sensitive measurement method for two-dimensional<br>systems. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 1192-1195.        | 1.3       | 1            |
| 195 | Electrically controlled piezo-rotator for studying semiconductor nanostructures at milli-Kelvin temperatures and high magnetic fields. , 2010, , .                                       |           | 1            |
| 196 | Charge transport by modulating spin-orbit gauge fields for quasi-one-dimensional holes. Applied<br>Physics Letters, 2011, 98, 152101.                                                    | 1.5       | 1            |
| 197 | Mapping the anisotropy of the Zeeman spin splitting of one-dimensional heavy holes in a GaAs quantum point contact. , 2014, , .                                                          |           | 1            |
| 198 | Determining the stability and activation energy of Si acceptors in AlGaAs using quantum interference<br>in an open hole quantum dot. Physical Review B, 2014, 89, .                      | 1.1       | 1            |

| #   | Article                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Ultraâ€5hallow Allâ€Epitaxial Aluminum Gate GaAs/Al x Ga 1â^' x As Transistors with High Electron<br>Mobility. Advanced Functional Materials, 0, , 2104213.                                   | 7.8 | 1         |
| 200 | Measuring the Charge and Spin States ofÂElectrons on Individual Dopant Atoms inÂSilicon. Topics in Applied Physics, 2009, , 169-182.                                                          | 0.4 | 1         |
| 201 | Anomalous integer quantum Hall states in coupled double quantum wells and the effect of Landau<br>level broadening. Journal of Physics Condensed Matter, 1999, 11, 3711-3728.                 | 0.7 | 0         |
| 202 | <title>Nanoscale single-electron transistor architectures for single spin detection in solid state quantum computer devices</title> . , 2001, , .                                             |     | 0         |
| 203 | Modeling of electrostatic gate operations in the Kane solid state quantum computer. , 2001, , .                                                                                               |     | 0         |
| 204 | The fabrication of devices in silicon using scanning probe microscopy. , 2005, , .                                                                                                            |     | 0         |
| 205 | Electric Field Induced Charge Noise in Doped Silicon: Ionisation of Phosphorus Dopants. AIP<br>Conference Proceedings, 2005, , .                                                              | 0.3 | 0         |
| 206 | An Improved Process for Fabricating High-Mobility Organic Molecular Crystal Field-Effect<br>Transistors. , 2006, , .                                                                          |     | 0         |
| 207 | Electrical properties of atomically controlled Si:P nanowires created by scanning probe microscopy.<br>AIP Conference Proceedings, 2007, , .                                                  | 0.3 | 0         |
| 208 | Conductance Quantisation In An Induced Hole Quantum Wire. AIP Conference Proceedings, 2007, , .                                                                                               | 0.3 | 0         |
| 209 | 0.7 Structure and zero bias anomaly in one-dimensional hole systems. Physica E: Low-Dimensional<br>Systems and Nanostructures, 2008, 40, 1501-1503.                                           | 1.3 | 0         |
| 210 | Metallic behavior in low-disorder two-dimensional hole systems in the presence of long- and short-range disorder. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1599-1601. | 1.3 | 0         |
| 211 | DREAMS VERSUS REALITY: PLENARY DEBATE SESSION ON QUANTUM COMPUTING. Fluctuation and Noise Letters, 2008, 08, C27-C51.                                                                         | 1.0 | 0         |
| 212 | Ground-plane screening of Coulomb interactions by a nearby two-dimensional system. Physica E:<br>Low-Dimensional Systems and Nanostructures, 2010, 42, 1228-1231.                             | 1.3 | 0         |
| 213 | Crystallographic anisotropy of the Zeeman splitting in 1D hole quantum wires. Physica E:<br>Low-Dimensional Systems and Nanostructures, 2010, 42, 967-970.                                    | 1.3 | 0         |
| 214 | The Reduced Effective Interaction Parameter in Closely Spaced Two-dimensional Hole Systems. , 2010, , .                                                                                       |     | 0         |
| 215 | Fabrication and characterization of an undoped GaAs single hole transistor. , 2010, , .                                                                                                       |     | 0         |
| 216 | Novel annealing processes for soluble acenes. , 2010, , .                                                                                                                                     |     | 0         |

216 Novel annealing processes for soluble acenes., 2010,,.

| #   | Article                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Nuclear magnetic resonance in GaAs-AlGaAs nanostructure devices. , 2010, , .                                                                                             |     | Ο         |
| 218 | Fabrication of undoped AlGaAs/GaAs electron quantum dots. , 2010, , .                                                                                                    |     | 0         |
| 219 | Can insulating the gates lead us to stable modulation-doped hole quantum devices?. , 2010, , .                                                                           |     | Ο         |
| 220 | Fabrication and characterisation of an induced ambipolar device on AlGaAs/GaAs Heterostructures. , 2010, , .                                                             |     | 0         |
| 221 | Fabrication of Undoped AlGaAsâ^•GaAs Electron Quantum Dots. AIP Conference Proceedings, 2011, , .                                                                        | 0.3 | 0         |
| 222 | (100) GaAs/AlxGa1â^'xAs heterostructures for Zeeman spin splitting studies of hole quantum wires.<br>Journal of Crystal Growth, 2011, 323, 48-51.                        | 0.7 | 0         |
| 223 | Overlapping-Gate Architecture for Silicon Hall Bar MOSFET Devices in the Low Electron Density and<br>High Magnetic Field Regime. Materials Science Forum, 0, 700, 93-95. | 0.3 | 0         |
| 224 | Low temperature transport on surface conducting diamond. , 2012, , .                                                                                                     |     | 0         |
| 225 | "You need another gate, mate": g-factor engineering in quantum wires and wrap-gated nanowires. , 2012, , .                                                               |     | 0         |
| 226 | Observation of the Kondo effect in a spin-3/2 hole quantum dot. , 2012, , .                                                                                              |     | 0         |
| 227 | The 1D g-factor and 0.7 anomaly in QPCs with independent control over density. , 2012, , .                                                                               |     | 0         |
| 228 | The origin of gate hysteresis in p-type Si-doped AlGaAs/GaAs heterostructures. , 2012, , .                                                                               |     | 0         |
| 229 | The influence of small-angle scattering on ballistic transport in quantum dots. , 2012, , .                                                                              |     | 0         |
| 230 | Observation of the Kondo effect in a spin-32 hole quantum dot. , 2013, , .                                                                                               |     | 0         |
| 231 | QUANTUM GLASS TRANSITION AT FINITE TEMPERATURE IN TWO-DIMENSIONAL ELECTRON LAYERS.<br>International Journal of Modern Physics B, 2013, 27, 1347004.                      | 1.0 | 0         |
| 232 | Fabrication and characterization of few-hole quantum dots in undoped GaAs/AlGaAs heterostructures. , 2014, , .                                                           |     | 0         |
| 233 | Observation of single hole transport in a highly tunable silicon quantum dot. , 2014, , .                                                                                |     | 0         |
| 234 | Probing a single acceptor in a silicon nanotransistor. , 2014, , .                                                                                                       | _   | 0         |

14

| #   | Article                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Publisher's Note: Manifestation of a non-Abelian Berry phase in ap-type semiconductor system [Phys.<br>Rev. B93, 205424 (2016)]. Physical Review B, 2016, 93, .           | 1.1 | 0         |
| 236 | Publisher's Note: Electrical control of the sign of thegfactor in a GaAs hole quantum point contact<br>[Phys. Rev. B94, 041406(R) (2016)]. Physical Review B, 2016, 94, . | 1.1 | 0         |
| 237 | Electron spin relaxation of single phosphorus donors and donor clusters in atomically engineered silicon devices. , 2017, , .                                             |     | 0         |
| 238 | Is there a Metallic State in Two Dimensions?. Australian Journal of Physics, 2000, 53, 513.                                                                               | 0.6 | 0         |
| 239 | Is there a true metallic state in two dimensions?. Springer Proceedings in Physics, 2001, , 735-738.                                                                      | 0.1 | 0         |
| 240 | TUNNELING AND HOPPING BETWEEN DOMAINS IN THE METAL-INSULATOR TRANSITION IN TWO-DIMENSIONS. , 2008, , .                                                                    |     | 0         |
| 241 | Anomalies in magneto-transport in spin-orbit coupled systems. , 2018, , .                                                                                                 |     | 0         |