
Shuping Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1189381/publications.pdf Version: 2024-02-01

SHUDING ZHANG

#	Article	IF	CITATIONS
1	Catalytic co-pyrolysis of food waste digestate and corn husk with CaO catalyst for upgrading bio-oil. Renewable Energy, 2022, 186, 105-114.	8.9	26
2	Catalytic activity evaluation and deactivation progress of red mud/carbonaceous catalyst for efficient biomass gasification tar cracking. Fuel, 2022, 323, 124278.	6.4	34
3	Inhibition mechanism of calcium hydroxide on melting and agglomeration behaviors of lignin under torrefaction temperature range. Fuel Processing Technology, 2022, 235, 107370.	7.2	1
4	Fractional condensation of pyrolysis oil from fast pyrolysis of food waste digestate for enrichment of high value-added nitrogen-containing components. Journal of Analytical and Applied Pyrolysis, 2022, 166, 105609.	5.5	5
5	Porous Carbons Derived from Desilication Treatment and Mixed Alkali Activation of Rice Husk Char for Supercapacitors. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2021, 43, 282-290.	2.3	9
6	Catalytic cracking of biomass tar using Ni nanoparticles embedded carbon nanofiber/porous carbon catalysts. Energy, 2021, 216, 119285.	8.8	47
7	Investigation of Char Yield and Its Physicochemical Properties with Recycling of Heavy Oil from Biomass Pyrolysis. Energy & Fuels, 2021, 35, 2326-2334.	5.1	4
8	Simultaneous production of aromatics-rich bio-oil and carbon nanomaterials from catalytic co-pyrolysis of biomass/plastic wastes and in-line catalytic upgrading of pyrolysis gas. Waste Management, 2021, 121, 95-104.	7.4	54
9	Upgrading Biomass Fuels via Combination of CO ₂ -Leaching and Torrefaction. Energy & Fuels, 2021, 35, 5006-5014.	5.1	8
10	Study on co-hydrothermal treatment combined with pyrolysis of rice straw/sewage sludge: Biochar properties and heavy metals behavior. Journal of Analytical and Applied Pyrolysis, 2021, 155, 105074.	5.5	33
11	Catalytic conversion of plastic wastes using cost-effective bauxite residue as catalyst into H2-rich syngas and magnetic nanocomposites for chrome(VI) detoxification. Journal of Hazardous Materials, 2021, 413, 125289.	12.4	25
12	Preparation and characterization of char supported Ni Cu nanoalloy catalyst for biomass tar cracking together with syngas-rich gas production. Fuel Processing Technology, 2021, 218, 106858.	7.2	29
13	Thermal decomposition behavior and sulfur release characteristics for torrefied wheat straw during pyrolysis process. Bioresource Technology, 2021, 333, 125172.	9.6	4
14	Synthesis of modified char-supported Ni–Fe catalyst with hierarchical structure for catalytic cracking of biomass tar. Renewable Energy, 2021, 174, 188-198.	8.9	36
15	Construction of Fe embedded graphene nanoshell/carbon nanofibers catalyst for catalytic cracking of biomass tar: Effect of CO2 etching. Fuel, 2021, 305, 121552.	6.4	25
16	The synergistic mechanism between coke depositions and gas for H2 production from co-pyrolysis of biomass and plastic wastes via char supported catalyst. Waste Management, 2021, 121, 23-32.	7.4	47
17	Investigation of molten salt in wet torrefaction and its effects on fast pyrolysis behaviors. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2020, 42, 577-585.	2.3	4
18	Highly porous N-doped carbons production from biomass for high-performance supercapacitors without chemical nitrogen-containing dopants. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2020, 42, 1797-1807.	2.3	16

SHUPING ZHANG

#	Article	IF	CITATIONS
19	A green route for pyrolysis poly-generation of typical high ash biomass, rice husk: Effects on simultaneous production of carbonic oxide-rich syngas, phenol-abundant bio-oil, high-adsorption porous carbon and amorphous silicon dioxide. Bioresource Technology, 2020, 295, 122243.	9.6	48
20	Syngas production at low temperature via the combination of hydrothermal pretreatment and activated carbon catalyst along with value-added utilization of tar and bio-char. Energy Conversion and Management, 2020, 205, 112382.	9.2	26
21	Performances of syngas production and deposited coke regulation during co-gasification of biomass and plastic wastes over Ni/γ-Al2O3 catalyst: Role of biomass to plastic ratio in feedstock. Chemical Engineering Journal, 2020, 392, 123728.	12.7	95
22	Co-pyrolysis of Sewage Sludge and Rice Straw: Thermal Behavior and Char Characteristic Evaluations. Energy & Fuels, 2020, 34, 607-615.	5.1	35
23	Physicochemical structure and reactivity of char from torrefied rice husk: Effects of inorganic species and torrefaction temperature. Fuel, 2020, 262, 116667.	6.4	35
24	Combination of acid washing and torrefaction on Co-production of syngas and phenoli-riched bio-oil via low-temperature catalytic pyrolysis. Energy, 2020, 210, 118633.	8.8	5
25	Physiochemical properties and pyrolysis behavior evaluations of hydrochar from co-hydrothermal treatment of rice straw and sewage sludge. Biomass and Bioenergy, 2020, 140, 105664.	5.7	57
26	Effects of MgCl2 and Mg(NO3)2 loading on catalytic pyrolysis of sawdust for bio-oil and MgO-impregnated biochar production. Journal of Analytical and Applied Pyrolysis, 2020, 152, 104962.	5.5	26
27	Release characteristics of potassium and chlorine for torrefied wheat straw during a combined pyrolysis-combustion system. Bioresource Technology, 2020, 312, 123591.	9.6	13
28	Synthesis and characterization of rice husk-based magnetic porous carbon by pyrolysis of pretreated rice husk with FeCl3 and ZnCl2. Journal of Analytical and Applied Pyrolysis, 2020, 147, 104806.	5.5	37
29	Simultaneous Catalytic Conversion of Acid-Pretreated Biomass into High-Quality Syngas and Bio-oil at Mild Temperature. Energy & Fuels, 2020, 34, 8366-8375.	5.1	4
30	Effect of Sludge-Based Additive on Ash Characteristic and Potassium Fixation during the Rice Straw Combustion Process. Energy & amp; Fuels, 2020, 34, 3367-3375.	5.1	8
31	Evaluation of pyrolysis behavior and products properties of rice husk after combined pretreatment of washing and torrefaction. Biomass and Bioenergy, 2019, 127, 105293.	5.7	40
32	The influence of preparation method of char supported metallic Ni catalysts on the catalytic performance for reforming of biomass tar. International Journal of Energy Research, 2019, 43, 6922.	4.5	13
33	Impacts and release characteristics of K and Mg contained in rice husk during torrefaction process. Energy, 2019, 186, 115888.	8.8	16
34	High quality H2-rich syngas production from pyrolysis-gasification of biomass and plastic wastes by Ni–Fe@Nanofibers/Porous carbon catalyst. International Journal of Hydrogen Energy, 2019, 44, 26193-26203.	7.1	80
35	Adsorption characteristics and mechanism of Pb(II) by agricultural waste-derived biochars produced from a pilot-scale pyrolysis system. Waste Management, 2019, 100, 287-295.	7.4	75
36	Catalytic cracking of biomass tar together with syngas production over red brick powder-supported nickel catalysts. Fuel Processing Technology, 2019, 194, 106123.	7.2	29

SHUPING ZHANG

#	Article	IF	CITATIONS
37	Influence of torrefaction on properties of activated carbon obtained from physical activation of pyrolysis char. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2019, 41, 2246-2256.	2.3	4
38	Effects of torrefaction and organic-acid leaching pretreatment on the pyrolysis behavior of rice husk. Energy, 2018, 149, 804-813.	8.8	96
39	Assessment of hydrothermal carbonization and coupling washing with torrefaction of bamboo sawdust for biofuels production. Bioresource Technology, 2018, 258, 111-118.	9.6	46
40	Catalytic fast pyrolysis of rice husk: Effect of coupling leaching with torrefaction pretreatment. Journal of Analytical and Applied Pyrolysis, 2018, 133, 91-96.	5.5	40
41	Upgrading of bio-oil from catalytic pyrolysis of pretreated rice husk over Fe-modified ZSM-5 zeolite catalyst. Fuel Processing Technology, 2018, 175, 17-25.	7.2	118
42	Effect of Washing Pretreatment with Aqueous Fraction of Bio-Oil on Pyrolysis Characteristic of Rice Husk and Preparation of Amorphous Silica. Waste and Biomass Valorization, 2018, 9, 861-869.	3.4	22
43	Biomass tar cracking and syngas production using rice husk char-supported nickel catalysts coupled with microwave heating. RSC Advances, 2018, 8, 40873-40882.	3.6	20
44	Effects of pretreatment and FeCl3 preload of rice husk on synthesis of magnetic carbon composites by pyrolysis for supercapacitor application. Journal of Analytical and Applied Pyrolysis, 2018, 135, 22-31.	5.5	43
45	Pyrolysis behavior of raw/torrefied rice straw after different demineralization processes. Biomass and Bioenergy, 2018, 119, 229-236.	5.7	30
46	In-situ catalytic conversion of tar from biomass gasification over carbon nanofibers- supported Fe-Ni bimetallic catalysts. Fuel Processing Technology, 2018, 182, 77-87.	7.2	75
47	Effect of inorganic species on torrefaction process and product properties of rice husk. Bioresource Technology, 2018, 265, 450-455.	9.6	52
48	Investigation of representative components of flue gas used as torrefaction pretreatment atmosphere and its effects on fast pyrolysis behaviors. Bioresource Technology, 2018, 267, 584-590.	9.6	31
49	Influence of coupling demineralization with the torrefaction pretreatment process on the pyrolysis characteristics and kinetics of rice husk. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2017, 39, 726-732.	2.3	7
50	Effects of wet torrefaction on the physicochemical properties and pyrolysis product properties of rice husk. Energy Conversion and Management, 2017, 141, 403-409.	9.2	91
51	Combination of Light Bio-oil Washing and Torrefaction Pretreatment of Rice Husk: Its Effects on Physicochemical Characteristics and Fast Pyrolysis Behavior. Energy & Fuels, 2016, 30, 3030-3037.	5.1	47
52	Physicochemical properties and combustion behavior of duckweed during wet torrefaction. Bioresource Technology, 2016, 218, 1157-1162.	9.6	62
53	Washing pretreatment with light bio-oil and its effect on pyrolysis products of bio-oil and biochar. RSC Advances, 2016, 6, 5270-5277.	3.6	41
54	Effects of torrefaction on yield and quality of pyrolysis char and its application on preparation of activated carbon. Journal of Analytical and Applied Pyrolysis, 2016, 119, 217-223.	5.5	63

SHUPING ZHANG

#	Article	IF	CITATIONS
55	Effects of water washing and torrefaction on the pyrolysis behavior and kinetics of rice husk through TGA and Py-GC/MS. Bioresource Technology, 2016, 199, 352-361.	9.6	133
56	Effects of four types of dilute acid washing on moso bamboo pyrolysis using Py–GC/MS. Bioresource Technology, 2015, 185, 62-69.	9.6	88
57	Effects of water washing and torrefaction pretreatments on rice husk pyrolysis by microwave heating. Bioresource Technology, 2015, 193, 442-448.	9.6	119
58	High quality syngas production from microwave pyrolysis of rice husk with char-supported metallic catalysts. Bioresource Technology, 2015, 191, 17-23.	9.6	154