Fumiyuki Nihey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11893025/publications.pdf Version: 2024-02-01

FIIMIVIIKI NIHEV

#	Article	IF	CITATIONS
1	High Purity Semiconducting Single-Walled Carbon Nanotubes for Printed Electronics. ACS Applied Nano Materials, 2019, 2, 4286-4292.	5.0	10
2	Preparation, electrical properties, and supercapacitor applications of fibrous aggregates of single-walled carbon nanohorns. Carbon, 2018, 138, 379-383.	10.3	6
3	Carbon nanotubes forming cores of fibrous aggregates of carbon nanohorns. Carbon, 2017, 122, 665-668.	10.3	9
4	Preparation and Characterization of Newly Discovered Fibrous Aggregates of Singleâ€Walled Carbon Nanohorns. Advanced Materials, 2016, 28, 7174-7177.	21.0	20
5	Adhesion property of carbon nanotube micelles for high-quality printed transistors. , 2016, , .		1
6	Thin-film transistors using DNA-wrapped semiconducting single-wall carbon nanotubes with selected chiralities. Applied Physics Express, 2015, 8, 105101.	2.4	2
7	Threshold shift by polymeric cover layer containing phthalocyanine pigment on printed CNT transistors. , 2015, , .		0
8	Length dependent performance of single-wall carbon nanotube thin film transistors. Carbon, 2015, 91, 370-377.	10.3	24
9	High performances and low variability of semiconducting-SWCNT thin-film-transistors achieved by shortening tube lengths. Materials Research Society Symposia Proceedings, 2014, 1586, 1.	0.1	0
10	Electrical property of printed transistors fabricated with various types of carbon nanotube ink. , 2012, , .		3
11	Highly Uniform Thin-Film Transistors Printed on Flexible Plastic Films with Morphology-Controlled Carbon Nanotube Network Channels. Applied Physics Express, 2012, 5, 055102.	2.4	22
12	Low variability with high performance in thin-film transistors of semiconducting carbon nanotubes achieved by shortening tube lengths. RSC Advances, 2012, 2, 12408.	3.6	13
13	Separation of Metallic and Semiconducting Single-Wall Carbon Nanotube Solution by Vertical Electric Field. Journal of Physical Chemistry C, 2011, 115, 22827-22832.	3.1	40
14	Diameterâ€Dependent Performance of Singleâ€Walled Carbon Nanotube Thinâ€Film Transistors. Advanced Materials, 2011, 23, 4631-4635.	21.0	39
15	Printing technology and advantage of purified semiconducting carbon nanotubes for thin film transistor fabrication on plastic films. , 2011, , .		1
16	Relationship between carbon nanotube density and hysteresis characteristics of carbon nanotube random network-channel field effect transistors. Journal of Applied Physics, 2010, 107, 094501.	2.5	13
17	Estimating the yield and characteristics of random network carbon nanotube transistors. Applied Physics Letters, 2008, 92, 163507.	3.3	22

18 ã, «ãf¼ãfœãf³ãfŠãfŽãfẽf¥ãf¼ãf–ãf^ãf©ãf³ã, ã, 1ã, ¿. Hyomen Gijutsu/Journal of the Surface Finishing Society of ‡apan, 2006, 57, 34

Гимічикі Nihey

#	Article	IF	CITATIONS
19	Resistance Evaluation and Growth of Carbon Nanotubes. IEEJ Transactions on Electronics, Information and Systems, 2006, 126, 720-724.	0.2	0
20	Diameter-Controlled Carbon Nanotubes Grown from Lithographically Defined Nanoparticles. Japanese Journal of Applied Physics, 2004, 43, L1356-L1358.	1.5	76
21	Carbon-Nanotube Field-Effect Transistors with Very High Intrinsic Transconductance. Japanese Journal of Applied Physics, 2003, 42, L1288-L1291.	1.5	30
22	A Top-Gate Carbon-Nanotube Field-Effect Transistor with a Titanium-Dioxide Insulator. Japanese Journal of Applied Physics, 2002, 41, L1049-L1051.	1.5	41
23	Fluorescence Visualization of Carbon Nanotubes by Modification with Silicon-Based Polymer. Nano Letters, 2002, 2, 1157-1160.	9.1	39
24	Quantum transport in antidot arrays in magnetic fields. Physical Review B, 1995, 51, 9881-9890.	3.2	45
25	Phase-coherence length in a two-dimensional electron gas at high magnetic fields. Physica B: Condensed Matter, 1993, 184, 34-37.	2.7	3
26	Aharonov-Bohm effect in antidot structures. Physica B: Condensed Matter, 1993, 184, 398-402.	2.7	72
27	Proposed measurements of the phaseâ€coherence length in a twoâ€dimensional electron gas at high magnetic fields. Journal of Applied Physics, 1992, 71, 4390-4398.	2.5	4