
Georges Ceuleneer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11892781/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characteristics and evolution of the segmentation of the Mid-Atlantic Ridge between 20°N and 24°N during the last 10 million years. Earth and Planetary Science Letters, 1995, 129, 55-71.	4.4	125
2	Primitive layered gabbros from fast-spreading lower oceanic crust. Nature, 2014, 505, 204-207.	27.8	125
3	Trace element and isotopic characterization of mafic cumulates in a fossil mantle diapir (Oman) Tj ETQq1 1 0.784	1314 rgBT	/Qverlock 10 108
4	Characterization of hyperalkaline fluids produced by lowâ€ŧemperature serpentinization of mantle peridotites in the Oman and Ligurian ophiolites. Geochemistry, Geophysics, Geosystems, 2013, 14, 2496-2522.	2.5	104
5	Chromite crystallization in a multicellular magma flow: Evidence from a chromitite dike in the Oman ophiolite. Lithos, 1991, 27, 231-257.	1.4	103
6	A New View on the Petrogenesis of the Oman Ophiolite Chromitites from Microanalyses of Chromite-hosted Inclusions. Journal of Petrology, 2012, 53, 2411-2440.	2.8	100
7	Nature and distribution of dykes and related melt migration structures in the mantle section of the Oman ophiolite. Geochemistry, Geophysics, Geosystems, 2003, 4, .	2.5	98
8	The remelting of hydrothermally altered peridotite at mid-ocean ridges by intruding mantle diapirs. Nature, 1999, 402, 514-518.	27.8	96
9	Tectonic setting for the genesis of oceanic plagiogranites: evidence from a paleo-spreading structure in the Oman ophiolite. Earth and Planetary Science Letters, 1996, 139, 177-194.	4.4	86
10	Oman diopsidites: a new lithology diagnostic of very high temperature hydrothermal circulation in mantle peridotite below oceanic spreading centres. Earth and Planetary Science Letters, 2007, 255, 289-305.	4.4	81
11	The dunitic mantle-crust transition zone in the Oman ophiolite: Residue of melt-rock interaction, cumulates from high-MgO melts, or both?. Geology, 2013, 41, 67-70.	4.4	73
12	Geoid and depth anomalies over ocean swells and troughs: Evidence of an increasing trend of the geoid to depth ratio with age of plate. Journal of Geophysical Research, 1988, 93, 8064-8077.	3.3	62
13	Thermal structure of a fossil mantle diapir inferred from the distribution of mafic cumulates. Nature, 1996, 379, 149-153.	27.8	62
14	Mineralogical assemblages forming at hyperalkaline warm springs hosted on ultramafic rocks: A case study of Oman and Ligurian ophiolites. Geochemistry, Geophysics, Geosystems, 2013, 14, 2474-2495.	2.5	58
15	Compaction in a mantle mush with high melt concentrations and the generation of magma chambers. Earth and Planetary Science Letters, 2001, 188, 313-328.	4.4	55
16	Genesis of andesitic–boninitic magmas at mid-ocean ridges by melting of hydrated peridotites: Geochemical evidence from DSDP Site 334 gabbronorites. Earth and Planetary Science Letters, 2005, 236, 632-653.	4.4	54
17	Chromian spinels in mafic–ultramafic mantle dykes: Evidence for a two-stage melt production during the evolution of the Oman ophiolite. Lithos, 2008, 106, 137-154.	1.4	49
18	Igneous Layering in Basaltic Magma Chambers. Springer Geology, 2015, , 75-152.	0.3	49

GEORGES CEULENEER

#	Article	IF	CITATIONS
19	Primitive Arc Magmatism and Delamination: Petrology and Geochemistry of Pyroxenites from the Cabo Ortegal Complex, Spain. Journal of Petrology, 2016, 57, 1921-1954.	2.8	46
20	Thick sections of layered ultramafic cumulates in the Oman ophiolite revealed by an airborne hyperspectral survey: Petrogenesis and relationship to mantle diapirism. Lithos, 2010, 114, 265-281.	1.4	44
21	Viscosity and thickness of the sub-lithospheric low-viscosity zone: constraints from geoid and depth over oceanic swells. Earth and Planetary Science Letters, 1988, 89, 84-102.	4.4	42
22	Origin of the dunitic mantle-crust transition zone in the Oman ophiolite: The interplay between percolating magmas and high-temperature hydrous fluids. Geology, 2017, 45, 471-474.	4.4	42
23	The effect of sloped isotherms on melt migration in the shallow mantle: a physical and numerical model based on observations in the Oman ophiolite. Earth and Planetary Science Letters, 2005, 229, 231-246.	4.4	39
24	Extreme geochemical variability through the dunitic transition zone of the Oman ophiolite: Implications for melt/fluid-rock reactions at Moho level beneath oceanic spreading centers. Geochimica Et Cosmochimica Acta, 2018, 234, 1-23.	3.9	39
25	A systematic mapping procedure based on the Modified Gaussian Model to characterize magmatic units from olivine/pyroxenes mixtures: Application to the Syrtis Major volcanic shield on Mars. Journal of Geophysical Research E: Planets, 2013, 118, 1632-1655.	3.6	33
26	Seismic structure of an oceanic core complex at the Midâ€Atlantic Ridge, 22°19′N. Journal of Geophysical Research, 2010, 115, .	3.3	32
27	Three-dimensional models of mantle flow across a low-viscosity zone: implications for hotspot dynamics. Earth and Planetary Science Letters, 1990, 99, 170-184.	4.4	31
28	Mantle Flow and Melt Migration Beneath Oceanic Ridges: Models Derived from Observations in Ophiolites. Geophysical Monograph Series, 0, , 123-154.	0.1	29
29	The Eastern Makran Ophiolite (SE Iran): evidence for a Late Cretaceous fore-arc oceanic crust. International Geology Review, 2019, 61, 1313-1339.	2.1	26
30	Sources and timing of pyroxenite formation in the sub-arc mantle: Case study of the Cabo Ortegal Complex, Spain. Earth and Planetary Science Letters, 2017, 474, 490-502.	4.4	25
31	The Trinity ophiolite (California): the strange association of fertile mantle peridotite with ultra-depleted crustal cumulates. Bulletin - Societie Geologique De France, 2008, 179, 503-518.	2.2	24
32	Deformation of mantle pyroxenites provides clues to geodynamic processes in subduction zones: Case study of the Cabo Ortegal Complex, Spain. Earth and Planetary Science Letters, 2017, 472, 174-185.	4.4	24
33	Mapping of an ophiolite complex by high-resolution visible-infrared spectrometry. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	2.5	22
34	Melt hybridization and metasomatism triggered by syn-magmatic faults within the Oman ophiolite: A clue to understand the genesis of the dunitic mantle-crust transition zone. Earth and Planetary Science Letters, 2019, 516, 108-121.	4.4	18
35	Trace element heterogeneity in hydrothermal diopside: evidence for Ti depletion and Sr-Eu-LREE enrichment during hydrothermal metamorphism of mantle harzburgite. Journal of Mineralogical and Petrological Sciences, 2007, 102, 143-149.	0.9	16
36	Anatomy of a chromitite dyke in the mantle/crust transition zone of the Oman ophiolite. Lithos, 2018, 312-313, 343-357.	1.4	16

#	Article	IF	CITATIONS
37	The Origin of Felsic Intrusions Within the Mantle Section of the Samail Ophiolite: Geochemical Evidence for Three Distinct Mixing and Fractionation Trends. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020760.	3.4	14
38	Travertines Associated With Hyperalkaline Springs: Evaluation As A Proxy For Paleoenvironmental Conditions And Sequestration of Atmospheric CO ₂ . Journal of Sedimentary Research, 2016, 86, 1328-1343.	1.6	13
39	Multi-scale development of a stratiform chromite ore body at the base of the dunitic mantle-crust transition zone (Maqsad diapir, Oman ophiolite): The role of repeated melt and fluid influxes. Lithos, 2019, 350-351, 105235.	1.4	11
40	Sub-axial deformation in oceanic lower crust: Insights from seismic reflection profiles in the Enderby Basin and comparison with the Oman ophiolite. Earth and Planetary Science Letters, 2021, 554, 116698.	4.4	10
41	Reworking of old continental lithosphere: Unradiogenic Os and decoupled Hf Nd isotopes in sub-arc mantle pyroxenites. Lithos, 2020, 354-355, 105346.	1.4	9
42	The Chicken and Egg Dilemma Linking Dunites and Chromitites in the Mantle–Crust Transition Zone beneath Oceanic Spreading Centres: a Case Study of Chromite-hosted Silicate Inclusions in Dunites Formed at the Top of a Mantle Diapir (Oman Ophiolite). Journal of Petrology, 2021, 62, .	2.8	7
43	Hydrated Peridotite – Basaltic Melt Interaction Part I: Planetary Felsic Crust Formation at Shallow Depth. Frontiers in Earth Science, 2021, 9, .	1.8	7
44	Hydrated Peridotite–Basaltic Melt Interaction Part II: Fast Assimilation of Serpentinized Mantle by Basaltic Magma. Frontiers in Earth Science, 2020, 8, .	1.8	6
45	The microstructure of layered ultramafic cumulates: Case study of the Bear Creek intrusion, Trinity ophiolite, California, USA. Lithos, 2021, 388-389, 106047.	1.4	3
46	Tracing Carbonate Formation, Serpentinization, and Biological Materials With Microâ€∤Meso‣cale Infrared Imaging Spectroscopy in a Mars Analog System, Samail Ophiolite, Oman. Earth and Space Science, 2021, 8, e2021EA001637.	2.6	3
47	Ocean crust accretion along a high-temperature detachment fault in the Oman ophiolite: A structural and petrological study of the Bahla massif. Tectonophysics, 2021, , 229160.	2.2	3
48	Experimental diopsidite: Implications for natural diopsidite genesis through fluid-melt-mantle peridotite reaction. Mineralogy and Petrology, 2021, 115, 489-495.	1.1	1
49	The distinctive peridotite of Taww, Northern flank of Jabal Nakhl, Oman. Lithos, 2020, 376-377, 105758.	1.4	0