Yilong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1189236/publications.pdf Version: 2024-02-01

YHONG WANG

#	Article	IF	CITATIONS
1	Stress hyperglycemia is associated with inâ€hospital mortality in patients with diabetes and acute ischemic stroke. CNS Neuroscience and Therapeutics, 2022, 28, 372-381.	1.9	32
2	Path-Dependent Anisotropic Colloidal Assembly of Magnetic Nanocomposite–Protein Complexes. Langmuir, 2022, 38, 6265-6272.	1.6	1
3	GSHâ€Depleted Nanozymes with Dualâ€Radicals Enzyme Activities for Tumor Synergic Therapy. Advanced Functional Materials, 2021, 31, 2102160.	7.8	32
4	Cellâ€Friendly Isolation and pH‣ensitive Controllable Release of Circulating Tumor Cells by Fe ₃ O ₄ @CaCO ₃ Nanoplatform. Advanced Materials Interfaces, 2021, 8, 2101191.	1.9	6
5	Positively Charged Magnetic Nanoparticles for Capture of Circulating Tumor Cells from Clinical Blood Samples. Nano LIFE, 2020, 10, 1971001.	0.6	7
6	Rapid Label-Free Isolation of Circulating Tumor Cells from Patients' Peripheral Blood Using Electrically Charged Fe ₃ O ₄ Nanoparticles. ACS Applied Materials & Interfaces, 2020, 12, 4193-4203.	4.0	49
7	Efficient Capture and T2 Magnetic Resonance Assay of <i>Candida albicans</i> with Inorganic Nanoparticles: Role of Nanoparticle Surface Charge and Fungal Cell Wall. ACS Biomaterials Science and Engineering, 2019, 5, 3270-3278.	2.6	5
8	Bioelectricity, Its Fundamentals, Characterization Methodology, and Applications in Nanoâ€Bioprobing and Cancer Diagnosis. Advanced Biology, 2019, 3, e1900101.	3.0	18
9	<i>In-Vitro</i> Study of Cancer Cell Binding and Photothermal Inhibition Efficiency by Gold Nanoparticles-Capped Iron Oxide Nanospheres. Nano LIFE, 2019, 09, 1940004.	0.6	2
10	A new DNA sensor system for specific and quantitative detection of mycobacteria. Nanoscale, 2019, 11, 587-597.	2.8	10
11	Cancer cell–nanomaterial interface: role of geometry and surface charge of nanocomposites in the capture efficiency and cell viability. Biomaterials Science, 2019, 7, 2759-2768.	2.6	19
12	Recent Advances in Nanotechnology for Breast Cancer Therapy. Nano LIFE, 2019, 09, 1940003.	0.6	5
13	Nanomaterials for Cancer Precision Medicine. Advanced Materials, 2018, 30, e1705660.	11.1	136
14	Electrical-Charge-Mediated Cancer Cell Targeting via Protein Corona-Decorated Superparamagnetic Nanoparticles in a Simulated Physiological Environment. ACS Applied Materials & Interfaces, 2018, 10, 41986-41998.	4.0	36
15	Preparation of QDs@SiO ₂ /Polystyrene Composite Particles for Cancer Cells Detection. Nano LIFE, 2018, 08, 1841006.	0.6	3
16	A Lightâ€Triggered Mesenchymal Stem Cell Delivery System for Photoacoustic Imaging and Chemoâ€Photothermal Therapy of Triple Negative Breast Cancer. Advanced Science, 2018, 5, 1800382.	5.6	73
17	Titanium dioxide nanoparticles prime a specific activation state of macrophages. Nanotoxicology, 2017, 11, 1-14.	1.6	29
18	Biomarkerless targeting and photothermal cancer cell killing by surface-electrically-charged superparamagnetic Fe ₃ O ₄ composite nanoparticles. Nanoscale, 2017, 9, 1457-1465.	2.8	30

YILONG WANG

#	Article	IF	CITATIONS
19	Targeting and Regulating of an Oncogene via Nanovector Delivery of MicroRNA using Patient-Derived Xenografts. Theranostics, 2017, 7, 677-693.	4.6	33
20	Targeting Negative Surface Charges of Cancer Cells by Multifunctional Nanoprobes. Theranostics, 2016, 6, 1887-1898.	4.6	295
21	Influence of controlled surface functionalization of magnetic nanocomposites on the detection performance of immunochromatographic test. Sensors and Actuators B: Chemical, 2016, 237, 817-825.	4.0	6
22	Design and development of anisotropic inorganic/polystyrene nanocomposites by surface modification of zinc oxide nanoparticles. Materials Science and Engineering C, 2016, 64, 87-92.	3.8	9
23	Janus Nanostructures for Biomedical Applications: Dual-Surfaces of Single Particle for Multifunctionality. Springer Series in Biomaterials Science and Engineering, 2016, , 421-443.	0.7	1
24	Detection of Mycobacterium tuberculosis based on H37Rv binding peptides using surface functionalized magnetic microspheres coupled with quantum dots – a nano detection method for Mycobacterium tuberculosis. International Journal of Nanomedicine, 2015, 10, 77.	3.3	113
25	Janus Nanostructures and Their Bio-medical Applications. Frontiers in Nanobiomedical Research, 2015, , 111-133.	0.1	0
26	A highly sensitive and flexible magnetic nanoprobe labeled immunochromatographic assay platform for pathogen Vibrio parahaemolyticus. International Journal of Food Microbiology, 2015, 211, 109-116.	2.1	38
27	Preparation of spherical caged superparamagnetic nanocomposites with completed inorganic shell via a modified miniemulsion technology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 477, 84-89.	2.3	10
28	Effect of physiochemical property of Fe3O4 particle on magnetic lateral flow immunochromatographic assay. Sensors and Actuators B: Chemical, 2014, 197, 129-136.	4.0	48
29	Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe3O4 nanoparticles for biomedical applications. Materials Science and Engineering C, 2014, 42, 52-63.	3.8	119
30	Dual Functionalized Janus Nanocomposites for Targeted pH-Responsive Drug Delivery. Materials Research Society Symposia Proceedings, 2014, 1625, 1.	0.1	0
31	Amino-functionalized core-shell magnetic mesoporous composite microspheres for Pb(II) and Cd(II) removal. Journal of Environmental Sciences, 2013, 25, 830-837.	3.2	63
32	Synthesis of reduced graphene oxide/magnetite composites and investigation of their adsorption performance of fluoroquinolone antibiotics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 424, 74-80.	2.3	169
33	Dual Surfaceâ€Functionalized Janus Nanocomposites of Polystyrene/Fe ₃ O ₄ @SiO ₂ for Simultaneous Tumor Cell Targeting and Stimulusâ€Induced Drug Release. Advanced Materials, 2013, 25, 3485-3489.	11.1	186
34	DUAL SURFACE-FUNCTIONALIZED SUPERPARAMAGNETIC JANUS NANOCOMPOSITES OF POLYSTYRENE/Fe3O4@SiO2 VIA A ONE-POT MINIEMULSION METHOD. Nano LIFE, 2013, 03, 1343006.	0.6	0
35	Synergistic Removal of Pb(II), Cd(II) and Humic Acid by Fe3O4@Mesoporous Silica-Graphene Oxide Composites. PLoS ONE, 2013, 8, e65634.	1.1	63
36	Enhanced adsorption of humic acid on amine functionalized magnetic mesoporous composite microspheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 406, 61-67.	2.3	49

YILONG WANG

#	Article	IF	CITATIONS
37	Preparation of novel magnetic hollow mesoporous silica microspheres and their efficient adsorption. Journal of Colloid and Interface Science, 2012, 386, 129-134.	5.0	44
38	Cell-Penetrating Magnetic Nanoparticles for Highly Efficient Delivery and Intracellular Imaging of siRNA. Biomacromolecules, 2012, 13, 2723-2730.	2.6	65
39	Facile one-pot synthesis of yolk–shell superparamagnetic nanocomposites via ternary phase separations. Chemical Communications, 2011, 47, 10350.	2.2	22
40	Facile One-Pot Synthesis and Morphological Control of Asymmetric Superparamagnetic Composite Nanoparticles. Langmuir, 2011, 27, 7207-7212.	1.6	46
41	Preparation of highly fluorescent magnetic nanoparticles for analytes-enrichment and subsequent biodetection. Journal of Colloid and Interface Science, 2011, 353, 426-432.	5.0	22
42	Asymmetric Composite Nanoparticles with Anisotropic Surface Functionalities. Journal of Nanomaterials, 2009, 2009, 1-5.	1.5	9
43	Synthesis of Raspberry-Like SiO ₂ /Polystyrene Nanocomposite Particles via Miniemulsion Polymerization. Journal of Nanoscience and Nanotechnology, 2009, 9, 1571-1576.	0.9	7
44	Synthesis of Asymmetric Inorganic/Polymer Nanocomposite Particles via Localized Substrate Surface Modification and Miniemulsion Polymerization. Langmuir, 2008, 24, 606-608.	1.6	83
45	A Facile, Water-Based Synthesis of Highly Branched Nanostructures of Silver. Langmuir, 2008, 24, 12042-12046.	1.6	121