Juan-Carlos Idrobo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1189221/publications.pdf

Version: 2024-02-01

225 papers 20,044 citations

61 h-index

19657

139 g-index

234 all docs 234 docs citations

times ranked

234

26225 citing authors

#	Article	IF	CITATIONS
1	Intrinsic Structural Defects in Monolayer Molybdenum Disulfide. Nano Letters, 2013, 13, 2615-2622.	9.1	1,766
2	Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nature Materials, 2013, 12, 754-759.	27.5	1,590
3	An oxygen reduction electrocatalyst based on carbon nanotube–graphene complexes. Nature Nanotechnology, 2012, 7, 394-400.	31.5	1,533
4	van der Waals Epitaxy of MoS ₂ Layers Using Graphene As Growth Templates. Nano Letters, 2012, 12, 2784-2791.	9.1	888
5	In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nature Nanotechnology, 2013, 8, 119-124.	31.5	796
6	Selective Ionic Transport through Tunable Subnanometer Pores in Single-Layer Graphene Membranes. Nano Letters, 2014, 14, 1234-1241.	9.1	687
7	Highly Responsive Ultrathin GaS Nanosheet Photodetectors on Rigid and Flexible Substrates. Nano Letters, 2013, 13, 1649-1654.	9.1	683
8	Dopamine as a Carbon Source: The Controlled Synthesis of Hollow Carbon Spheres and Yolk‧tructured Carbon Nanocomposites. Angewandte Chemie - International Edition, 2011, 50, 6799-6802.	13.8	674
9	Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nature Communications, 2013, 4, 2541.	12.8	536
10	Heteroepitaxial Growth of Two-Dimensional Hexagonal Boron Nitride Templated by Graphene Edges. Science, 2014, 343, 163-167.	12.6	479
11	High-performance Ag–Co alloy catalysts for electrochemical oxygen reduction. Nature Chemistry, 2014, 6, 828-834.	13.6	383
12	Selective Molecular Transport through Intrinsic Defects in a Single Layer of CVD Graphene. ACS Nano, 2012, 6, 10130-10138.	14.6	331
13	Nanofiltration across Defect-Sealed Nanoporous Monolayer Graphene. Nano Letters, 2015, 15, 3254-3260.	9.1	272
14	Long-range ferromagnetic ordering in manganese-doped two-dimensional dichalcogenides. Physical Review B, 2013, 88, .	3.2	271
15	p-type doping of MoS ₂ thin films using Nb. Applied Physics Letters, 2014, 104, 092104.	3.3	268
16	Vertically Oriented Arrays of ReS ₂ Nanosheets for Electrochemical Energy Storage and Electrocatalysis. Nano Letters, 2016, 16, 3780-3787.	9.1	241
17	Direct visualization of the Jahn–Teller effect coupled to Na ordering in Na5/8MnO2. Nature Materials, 2014, 13, 586-592.	27.5	237
18	Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers. Nature Nanotechnology, 2014, 9, 436-442.	31.5	228

#	Article	IF	Citations
19	Local electronic structure variation resulting in Li â€^filament' formation within solid electrolytes. Nature Materials, 2021, 20, 1485-1490.	27.5	226
20	Direct Determination of the Chemical Bonding of Individual Impurities in Graphene. Physical Review Letters, 2012, 109, 206803.	7.8	222
21	Controlled Vapor Phase Growth of Single Crystalline, Two-Dimensional GaSe Crystals with High Photoresponse. Scientific Reports, 2014, 4, 5497.	3.3	222
22	Interface Structure and Atomic Bonding Characteristics in Silicon Nitride Ceramics. Science, 2004, 306, 1768-1770.	12.6	216
23	Growth Mechanisms and Oxidation Resistance of Gold-Coated Iron Nanoparticles. Chemistry of Materials, 2005, 17, 3181-3186.	6.7	212
24	Transitionâ€Metal Substitution Doping in Synthetic Atomically Thin Semiconductors. Advanced Materials, 2016, 28, 9735-9743.	21.0	208
25	Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response. Journal of Materials Chemistry C, 2015, 3, 7022-7028.	5.5	203
26	Heterogeneous sub-continuum ionic transport in statistically isolated graphene nanopores. Nature Nanotechnology, 2015, 10, 1053-1057.	31.5	203
27	Atomically localized plasmon enhancement in monolayer graphene. Nature Nanotechnology, 2012, 7, 161-165.	31.5	196
28	Re Doping in 2D Transition Metal Dichalcogenides as a New Route to Tailor Structural Phases and Induced Magnetism. Advanced Materials, 2017, 29, 1703754.	21.0	191
29	Quaternary 2D Transition Metal Dichalcogenides (TMDs) with Tunable Bandgap. Advanced Materials, 2017, 29, 1702457.	21.0	186
30	Synthesis of Patched or Stacked Graphene and hBN Flakes: A Route to Hybrid Structure Discovery. Nano Letters, 2013, 13, 933-941. Static polarizabilities and optical absorption spectra of gold clusters (amplimath) IJ FIQ 11.0.784314 rgBT (O	9.1 verlock 10	179 Tf 50 282 To
31		3.2	161
32	Low-Frequency Raman Fingerprints of Two-Dimensional Metal Dichalcogenide Layer Stacking Configurations. ACS Nano, 2015, 9, 6333-6342.	14.6	151
33	Highly sensitive phototransistors based on two-dimensional GaTe nanosheets with direct bandgap. Nano Research, 2014, 7, 694-703.	10.4	140
34	AC/AB Stacking Boundaries in Bilayer Graphene. Nano Letters, 2013, 13, 3262-3268.	9.1	137
35	Identification of site-specific isotopic labels by vibrational spectroscopy in the electron microscope. Science, 2019, 363, 525-528.	12.6	124
36	Nanoporous Atomically Thin Graphene Membranes for Desalting and Dialysis Applications. Advanced Materials, 2017, 29, 1700277.	21.0	118

#	Article	IF	CITATIONS
37	Platinum-Modulated Cobalt Nanocatalysts for Low-Temperature Aqueous-Phase Fischer–Tropsch Synthesis. Journal of the American Chemical Society, 2013, 135, 4149-4158.	13.7	116
38	Progress in ultrahigh energy resolution EELS. Ultramicroscopy, 2019, 203, 60-67.	1.9	111
39	Molecular Sieving Across Centimeter-Scale Single-Layer Nanoporous Graphene Membranes. ACS Nano, 2017, 11, 5726-5736.	14.6	105
40	Direct visualization of reversible dynamics in a Si6 cluster embedded in a graphene pore. Nature Communications, 2013, 4, 1650.	12.8	104
41	Van der Waals Epitaxial Growth of Two-Dimensional Single-Crystalline GaSe Domains on Graphene. ACS Nano, 2015, 9, 8078-8088.	14.6	103
42	Size dependence of the static polarizabilities and absorption spectra ofAgn(n=2–8)clusters. Physical Review B, 2005, 72, .	3.2	102
43	Temperature Measurement by a Nanoscale Electron Probe Using Energy Gain and Loss Spectroscopy. Physical Review Letters, 2018, 120, 095901.	7.8	97
44	Atomic Structure of Highly Strained <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>BiFeO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> Thin Films. Physical Review Letters, 2012, 108, 047601.	7.8	96
45	Water and Solute Transport Governed by Tunable Pore Size Distributions in Nanoporous Graphene Membranes. ACS Nano, 2017, 11, 10042-10052.	14.6	96
46	Correlating the three-dimensional atomic defects and electronic properties of two-dimensional transition metal dichalcogenides. Nature Materials, 2020, 19, 867-873.	27.5	96
47	The observation of square ice in graphene questioned. Nature, 2015, 528, E1-E2.	27.8	95
48	Elevated temperature microstructural stability in cast AlCuMnZr alloys through solute segregation. Materials Science & Description Among A	5.6	89
49	Controllable growth of layered selenide and telluride heterostructures and superlattices using molecular beam epitaxy. Journal of Materials Research, 2016, 31, 900-910.	2.6	85
50	Isoelectronic Tungsten Doping in Monolayer MoSe ₂ for Carrier Type Modulation. Advanced Materials, 2016, 28, 8240-8247.	21.0	85
51	Direct observation of nanometer-scale Mg- and B-oxide phases at grain boundaries in MgB2. Applied Physics Letters, 2001, 79, 1837-1839.	3.3	84
52	Sub-Ãngstrom electric field measurements on a universal detector in a scanning transmission electron microscope. Advanced Structural and Chemical Imaging, 2018, 4, 10.	4.0	84
53	Temperature Dependence of Aliovalent-Vanadium Doping in LiFePO < sub > 4 < /sub > Cathodes. Chemistry of Materials, 2013, 25, 768-781.	6.7	83
54	Epitaxial stabilization of $\hat{l}\mu$ -Fe2O3 (00l) thin films on SrTiO3 (111). Applied Physics Letters, 2010, 96, .	3.3	79

#	Article	IF	Citations
55	Atomic Structure and Electrical Activity of Grain Boundaries and Ruddlesden–Popper Faults in Cesium Lead Bromide Perovskite. Advanced Materials, 2019, 31, e1805047.	21.0	72
56	Facet-Dependent Disorder in Pristine High-Voltage Lithium–Manganese-Rich Cathode Material. ACS Nano, 2014, 8, 12710-12716.	14.6	71
57	Low Contact Barrier in 2H/1T′ MoTe ₂ In-Plane Heterostructure Synthesized by Chemical Vapor Deposition. ACS Applied Materials & Samp; Interfaces, 2019, 11, 12777-12785.	8.0	70
58	Electronic Excitations in Graphene in the $1\hat{a}\in$ 50 eV Range: The $\tilde{l}\in$ and $\tilde{l}\in$ + $\tilde{l}f$ Peaks Are Not Plasmons. Nano Letters, 2014, 14, 3827-3831.	9.1	69
59	Optical absorption spectra of intermediate-size silver clusters from first principles. Physical Review B, 2008, 78, .	3.2	67
60	Exploring the capabilities of monochromated electron energy loss spectroscopy in the infrared regime. Scientific Reports, 2018, 8, 5637.	3.3	67
61	Edge-Controlled Growth and Etching of Two-Dimensional GaSe Monolayers. Journal of the American Chemical Society, 2017, 139, 482-491.	13.7	65
62	Single Atom Microscopy. Microscopy and Microanalysis, 2012, 18, 1342-1354.	0.4	63
63	Thickness-Dependent Crossover from Charge- to Strain-Mediated Magnetoelectric Coupling in Ferromagnetic/Piezoelectric Oxide Heterostructures. ACS Nano, 2014, 8, 894-903.	14.6	61
64	Engineering single-atom dynamics with electron irradiation. Science Advances, 2019, 5, eaav2252.	10.3	61
65	Observation of coherent oxide precipitates in polycrystalline MgB2. Applied Physics Letters, 2002, 80, 3970-3972.	3.3	60
66	Structural Phase Transformation in Strained Monolayer MoWSe ₂ Alloy. ACS Nano, 2018, 12, 3468-3476.	14.6	57
67	Electronic and optical excitations in <mml:math display="inline" xmins:mml="http://www.w3.org/1998/Math/MathMiL"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Ag</mml:mtext></mml:mrow><mml:mi>n/mml:mtext>/mml:mrow><mml:mi>n</mml:mi>n</mml:mi>nnnn<mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:m< th=""><th>3.2</th><th>56</th></mml:m<></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:msub></mml:mrow></mml:math>	3.2	56
68	Physical Review 8, 2009, 79, Roomâ€Temperature Tunneling Behavior of Boron Nitride Nanotubes Functionalized with Gold Quantum Dots. Advanced Materials, 2013, 25, 4544-4548.	21.0	56
69	Effect of confined space reduction of graphite oxide followed by sulfur doping on oxygen reduction reaction in neutral electrolyte. Journal of Materials Chemistry A, 2013, 1, 7059.	10.3	56
70	Achieving Atomic Resolution Magnetic Dichroism by Controlling the Phase Symmetry of an Electron Probe. Physical Review Letters, 2014, 113, 145501.	7.8	54
71	Deformation Mechanisms of Vertically Stacked WS ₂ /MoS ₂ Heterostructures: The Role of Interfaces. ACS Nano, 2018, 12, 4036-4044.	14.6	54
72	2D Electrets of Ultrathin MoO ₂ with Apparent Piezoelectricity. Advanced Materials, 2020, 32, e2000006.	21.0	51

#	Article	IF	CITATIONS
73	Radiation-induced segregation in a ceramic. Nature Materials, 2020, 19, 992-998.	27.5	47
74	Vacancy-Driven Anisotropic Defect Distribution in the Battery-Cathode Material <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>LiFePO</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:math> . Physical Review Letters, 2011, 107, 085507.	7.8	46
75	Experimental observation of localized interfacial phonon modes. Nature Communications, 2021, 12, 6901.	12.8	46
76	First-principles absorption spectra of Cu <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow></mml:mrow><mml:mrow></mml:mrow></mml:msub></mml:mrow><td></td><td></td></mml:math>		
77	display="inline"> <mml:msup><mml:mi>Co</mml:mi><mml:mrow><mml:mn>4</mml:mn><mml:mo>+<mml:msub><mml:mi>Ca</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:msub><mml:m< td=""><td>7.8</td><td>45</td></mml:m<></mml:msub></mml:msub></mml:mo></mml:mrow></mml:msup>	7.8	45
78	mathvariant="normal">Ok. Physical Review Letters, 2012, 108, 196601. Revealing the Preferred Interlayer Orientations and Stackings of Twoâ€Dimensional Bilayer Gallium Selenide Crystals. Angewandte Chemie - International Edition, 2015, 54, 2712-2717.	13.8	45
79	Vibrational Spectroscopy of Water with High Spatial Resolution. Advanced Materials, 2018, 30, e1802702.	21.0	45
80	Humidity sensing using vertically oriented arrays of ReS ₂ nanosheets deposited on an interdigitated gold electrode. 2D Materials, 2016, 3, 045012.	4.4	42
81	Significantly Enhanced Emission Stability of CsPbBr ₃ Nanocrystals via Chemically Induced Fusion Growth for Optoelectronic Devices. ACS Applied Nano Materials, 2018, 1, 6091-6098.	5.0	42
82	Syntheses of Colloidal F:ln ₂ O ₃ Cubes: Fluorine-Induced Faceting and Infrared Plasmonic Response. Chemistry of Materials, 2019, 31, 2661-2676.	6.7	41
83	Characterizing the Two- and Three-Dimensional Resolution of an Improved Aberration-Corrected STEM. Microscopy and Microanalysis, 2009, 15, 441-453.	0.4	40
84	Structural, Electronic, and Optical Properties of Noble Metal Clusters from First Principles. Journal of Cluster Science, 2006, 17, 609-626.	3.3	39
85	Electrode architectures for high capacity multivalent conversion compounds: iron (ii and iii) fluoride. RSC Advances, 2014, 4, 6730.	3.6	39
86	Facile Size-Selective Defect Sealing in Large-Area Atomically Thin Graphene Membranes for Sub-Nanometer Scale Separations. Nano Letters, 2020, 20, 5951-5959.	9.1	38
87	Telluride-Based Atomically Thin Layers of Ternary Two-Dimensional Transition Metal Dichalcogenide Alloys. Chemistry of Materials, 2018, 30, 7262-7268.	6.7	37
88	Localization of inelastic electron scattering in the low-loss energy regime. Ultramicroscopy, 2012, 119, 51-56.	1.9	36
89	Detecting magnetic ordering with atomic size electron probes. Advanced Structural and Chemical Imaging, 2016, 2, .	4.0	36
90	Theoretical and Experimental Insight into the Mechanism for Spontaneous Vertical Growth of ReS 2 Nanosheets. Advanced Functional Materials, 2018, 28, 1801286.	14.9	35

#	Article	IF	Citations
91	Controlling the Infrared Dielectric Function through Atomic-Scale Heterostructures. ACS Nano, 2019, 13, 6730-6741.	14.6	33
92	Ab initiostructural energetics of $\hat{l}^2\hat{a}^3$ Si 3N4 surfaces. Physical Review B, 2005, 72, .	3.2	30
93	Two-Dimensional Lateral Epitaxy of 2H (MoSe ₂)–1T′ (ReSe ₂) Phases. Nano Letters, 2019, 19, 6338-6345.	9.1	30
94	Interlaced crystals having a perfect Bravais lattice and complex chemical order revealed by real-space crystallography. Nature Communications, 2014, 5, 5431.	12.8	29
95	Low-loss electron energy loss spectroscopy: An atomic-resolution complement to optical spectroscopies and application to graphene. Physical Review B, 2015, 92, .	3.2	29
96	Thermally Induced 2D Alloyâ€Heterostructure Transformation in Quaternary Alloys. Advanced Materials, 2018, 30, e1804218.	21.0	29
97	First-principles isomer-specific absorption spectra of Ag 11. Physical Review B, 2007, 75, .	3.2	28
98	Formation of Iron Oxyfluoride Phase on the Surface of Nano-Fe3O4 Conversion Compound for Electrochemical Energy Storage. Journal of Physical Chemistry Letters, 2013, 4, 3798-3805.	4.6	28
99	Vapor–Liquid–Solid Growth and Optoelectronics of Gallium Sulfide van der Waals Nanowires. ACS Nano, 2020, 14, 6117-6126.	14.6	28
100	Phase Segregation Behavior of Two-Dimensional Transition Metal Dichalcogenide Binary Alloys Induced by Dissimilar Substitution. Chemistry of Materials, 2017, 29, 7431-7439.	6.7	27
101	Polymerization of Acetonitrile via a Hydrogen Transfer Reaction from CH ₃ to CN under Extreme Conditions. Angewandte Chemie - International Edition, 2016, 55, 12040-12044.	13.8	26
102	Direct Observation of Infrared Plasmonic Fano Antiresonances by a Nanoscale Electron Probe. Physical Review Letters, 2019, 123, 177401.	7.8	25
103	Spatially and spectrally resolved orbital angular momentum interactions in plasmonic vortex generators. Light: Science and Applications, 2019, 8, 33.	16.6	25
104	Direct visualization of anionic electrons in an electride reveals inhomogeneities. Science Advances, 2021, 7, .	10.3	24
105	Two-Dimensional Gold Quantum Dots with Tunable Bandgaps. ACS Nano, 2019, 13, 4347-4353.	14.6	23
106	Measuring the hole-state anisotropy in MgB2 by electron energy-loss spectroscopy. Physical Review B, 2003, 67, .	3.2	22
107	First-principles absorption spectra of Sin(n=20–28) clusters: Time-dependent local-density approximation versus predictions from Mie theory. Physical Review B, 2006, 74, .	3.2	22
108	Single Crystalline La _{0.7} Sr _{0.3} MnO ₃ Molecular Sieve Nanowires with High Temperature Ferromagnetism. Journal of the American Chemical Society, 2011, 133, 4053-4061.	13.7	22

#	Article	IF	Citations
109	Van der Waals Nanowires with Continuously Variable Interlayer Twist and Twist Homojunctions. Advanced Functional Materials, 2021, 31, 2006412.	14.9	22
110	Atomic-resolution observations of semicrystalline intergranular thin films in silicon nitride. Applied Physics Letters, 2006, 88, 041919.	3.3	21
111	Optical gaps of free and embedded Si nanoclusters: Density functional theory calculations. Physical Review B, 2010, 82, .	3.2	20
112	Persistent photoconductivity in two-dimensional Mo _{1â^²<i>x</i>} W _{<i>x</i>} Se ₂ –MoSe ₂ van der Waals heterojunctions. Journal of Materials Research, 2016, 31, 923-930.	2.6	20
113	Intergranular Nanostructure Effects on Strength and Toughness of Si ₃ N ₄ . Journal of the American Ceramic Society, 2015, 98, 1650-1657.	3.8	19
114	Emerging Electron Microscopy Techniques for Probing Functional Interfaces in Energy Materials. Angewandte Chemie - International Edition, 2020, 59, 1384-1396.	13.8	19
115	Infrared plasmonics: STEM-EELS characterization of Fabry-Pérot resonance damping in gold nanowires. Physical Review B, 2020, 101, .	3.2	18
116	Revealing the Br \tilde{A}_i nsted-Evans-Polanyi relation in halide-activated fast MoS $<$ sub $>2sub> growth toward millimeter-sized 2D crystals. Science Advances, 2021, 7, eabj3274.$	10.3	18
117	Examining the structure and bonding in complex oxides using aberration-corrected imaging and spectroscopy. Physical Review B, 2012, 85, .	3.2	17
118	Atomic and electronic structures of SrTiO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math> /GaAs heterointerfaces: An 80-kV atomic-resolution electron energy-loss spectroscopy study. Physical Review B, 2012, 85, .	3.2	17
119	Oxidative dehydrogenation of isobutane over vanadia catalysts supported by titania nanoshapes. Catalysis Today, 2016, 263, 84-90.	4.4	17
120	Scalable synthesis of nanoporous atomically thin graphene membranes for dialysis and molecular separations <i>via</i> facile isopropanol-assisted hot lamination. Nanoscale, 2021, 13, 2825-2837.	5.6	17
121	Toward Single Mode, Atomic Size Electron Vortex Beams. Microscopy and Microanalysis, 2014, 20, 832-836.	0.4	16
122	Engineered Porous Carbon for High Volumetric Methane Storage. Adsorption Science and Technology, 2014, 32, 681-691.	3.2	16
123	Probing the localization of magnetic dichroism by atomic-size astigmatic and vortex electron beams. Scientific Reports, 2018, 8, 4019.	3.3	16
124	Origin of bulklike optical response in noble-metal Ag and Au nanoparticles. Physical Review B, 2010, 82,	3.2	14
125	Towards atomic scale engineering of rare-earth-doped SiAlON ceramics through aberration-corrected scanning transmission electron microscopy. Scripta Materialia, 2011, 65, 656-659.	5 . 2	14
126	Electronic and Quantum Transport Properties of Atomically Identified Si Point Defects in Graphene. Journal of Physical Chemistry Letters, 2014, 5, 1711-1718.	4.6	14

#	Article	IF	Citations
127	Local low rank denoising for enhanced atomic resolution imaging. Ultramicroscopy, 2018, 187, 34-42.	1.9	14
128	Focused Electron Beam Induced Deposition Synthesis of 3D Photonic and Magnetic Nanoresonators. ACS Applied Nano Materials, 2019, 2, 8075-8082.	5.0	14
129	Local strain-driven migration of oxygen vacancies to apical sites in YBa ₂ Cu ₃ O _{7â^²x} . Nanoscale, 2020, 12, 5922-5931. Direct observation of apical oxygen vacancies in the high-temperature superconductor <mml:math< td=""><td>5.6</td><td>14</td></mml:math<>	5.6	14
130	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>YB</mml:mi><mml:msub><mml:m mathvariant="normal">a<mml:mn>2</mml:mn></mml:m </mml:msub><mml:mi mathvariant="normal">C<mml:msub><mml:mi mathvariant="normal">u<mml:mn>3</mml:mn></mml:mi </mml:msub><mml:msub><mml:mi< td=""><td>2.4</td><td>14</td></mml:mi<></mml:msub></mml:mi </mml:mrow>	2.4	14
131	mathvariant="normal">O <mml:mrow><mml:mn>7</mml:mn><mml:mo>a^*</mml:mo><mml:mi>x<td>ml:mi>1.5</td><td>nml:mrow>< 13</td></mml:mi></mml:mrow>	ml:mi>1.5	nml:mrow>< 13
132	Orbital Occupancy and Charge Doping in Ironâ€Based Superconductors. Advanced Materials, 2014, 26, 6193-6198.	21.0	13
133	A short story of imaging and spectroscopy of two-dimensional materials by scanning transmission electron microscopy. Ultramicroscopy, 2017, 180, 156-162.	1.9	13
134	Strainâ€Induced Structural Deformation Study of 2D Mo <i></i>	3.7	13
135	High-K dielectric sulfur-selenium alloys. Science Advances, 2019, 5, eaau9785.	10.3	13
136	A new resolution quest in electron microscopy. Nature Reviews Materials, 2021, 6, 100-102.	48.7	13
137	Reconstructions and nonstoichiometry of oxygenated \hat{l}^2 -Si3N4(101 \hat{A} -0)surfaces. Physical Review B, 2008, 78, .	3.2	12
138	Aberrated electron probes for magnetic spectroscopy with atomic resolution: Theory and practical aspects. Physical Review B, 2016, 93, .	3.2	12
139	Cobalt-Molybdenum Single-Layered Nanocatalysts Decorated on Carbon Nanotubes and the Influence of Preparation Conditions on Their Hydrodesulfurization Catalytic Activity. Energy & Ene	5.1	12
140	Atomically sharp domain walls in an antiferromagnet. Science Advances, 2022, 8, eabn3535.	10.3	12
141	Universal optical response of Si-Si bonds and its evolution from nanoparticles to bulk crystals. Physical Review B, 2009, 79, .	3.2	11
142	Crystal-induced effects at crystal/amorphous interfaces: The case of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	c/mml:mn	>
143	Etching of transition metal dichalcogenide monolayers into nanoribbon arrays. Nanoscale Horizons, 2019, 4, 689-696.	8.0	11
144	Electroreduction of Carbon Dioxide into Selective Hydrocarbons at Low Overpotential Using Isomorphic Atomic Substitution in Copper Oxide. ACS Sustainable Chemistry and Engineering, 2020, 8, 179-189.	6.7	11

#	Article	lF	CITATIONS
145	Identification and lattice location of oxygen impurities in α-Si3N4. Applied Physics Letters, 2009, 95, 164101.	3.3	10
146	Selenium Segregation in Femtosecond-Laser Hyperdoped Silicon Revealed by Electron Tomography. Microscopy and Microanalysis, 2013, 19, 716-725.	0.4	10
147	Emergence of shallow energy levels in B-doped Q-carbon: A high-temperature superconductor. Acta Materialia, 2019, 174, 153-159.	7.9	10
148	Synthesis and optoelectronic properties of ultrathin Ga2O3 nanowires. Journal of Materials Chemistry C, 2020, 8, 11555-11562.	5.5	10
149	Atomic-resolution visualization and doping effects of complex structures in intercalated bilayer graphene. Physical Review Materials, 2019, 3, .	2.4	10
150	Atomic resolution study of the interfacial bonding at Si3N4/CeO2â^Î^grain boundaries. Applied Physics Letters, 2008, 93, 053104.	3.3	9
151	Probing the electronic structure and optical response of a graphene quantum disk supported on monolayer graphene. Journal of Physics Condensed Matter, 2012, 24, 314213.	1.8	9
152	Atomic-Scale Characterization of Oxide Thin Films Gated by Ionic Liquid. ACS Applied Materials & Samp; Interfaces, 2014, 6, 17018-17023.	8.0	9
153	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mi>T</mml:mi><mml:mi>c</mml:mi> in oxygen-deficient<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathyariant="normal">MoO</mml:mi><mml:mi><mml:mrow><mml:mn>2</mml:mn><mml:mo>â^'</mml:mo><mml:mi>)î</mml:mi></mml:mrow></mml:mi></mml:msub></mml:math></mml:msub>	3.2	9
154	properties of molybdenum arsenide and oxide binaries. Physical Review B. 2014, 90, Selfâ€Assembly of Atomically Thin Chiral Copper Heterostructures Templated by Black Phosphorus. Advanced Functional Materials, 2019, 29, 1903120.	14.9	9
155	Monochromators and Aberration Correctors: Taking EELS to New Levels of Energy and Spatial Resolution. Journal of Physics: Conference Series, 2006, 26, 59-64.	0.4	8
156	Pulsed infrared laser annealing of gold nanoparticles embedded in a silica matrix. Journal of Applied Physics, 2008, 103, 083545.	2.5	8
157	Defect chemistry of phospho-olivine nanoparticles synthesized by a microwave-assisted solvothermal process. Journal of Solid State Chemistry, 2013, 205, 197-204.	2.9	8
158	Signatures of distinct impurity configurations in atomic-resolution valence electron-energy-loss spectroscopy: Application to graphene. Physical Review B, 2016, 94, .	3.2	8
159	Single-Crystalline Î ³ -Ga ₂ S ₃ Nanotubes via Epitaxial Conversion of GaAs Nanowires. Nano Letters, 2019, 19, 8903-8910.	9.1	8
160	Theory of magnon diffuse scattering in scanning transmission electron microscopy. Physical Review B, 2021, 104, .	3.2	8
161	Quasiparticle gaps and exciton Coulomb energies in Si nanoshells: First-principles calculations. Physical Review B, 2009, 80, .	3.2	7
162	Atomicâ€Scale Spectroscopic Imaging of the Extremeâ€UV Optical Response of B―and Nâ€Doped Graphene. Advanced Functional Materials, 2019, 29, 1901819.	14.9	7

#	Article	IF	Citations
163	Spectroscopic signatures of edge states in hexagonal boron nitride. Nano Research, 2019, 12, 1663-1667.	10.4	7
164	Electron Beam Infrared Nano-Ellipsometry of Individual Indium Tin Oxide Nanocrystals. Nano Letters, 2020, 20, 7987-7994.	9.1	7
165	Chemical Mapping of Unstained DNA Origami Using STEM/EDS and Graphene Supports. ACS Applied Nano Materials, 2020, 3, 1123-1130.	5.0	7
166	Electronic and superconducting properties of oxygen-orderedMgB2compounds of the formMg2B3Ox. Physical Review B, 2004, 70, .	3.2	6
167	Invertibility of dynamical systems in granular phase space. Physical Review E, 1998, 58, 7987-7989.	2.1	5
168	Simulation of Charge Transport in Disordered Assemblies of Metallic Nano-Islands: Application to Boron-Nitride Nanotubes Functionalized with Gold Quantum Dots. Materials Research Society Symposia Proceedings, 2014, 1700, 17-28.	0.1	5
169	Facile MoS2 Growth on Reduced Graphene-Oxide via Liquid Phase Method. Frontiers in Materials, 2018, 5, .	2.4	5
170	Isotope-Resolved Electron Energy Loss Spectroscopy in a Monochromated Scanning Transmission Electron Microscope. Microscopy Today, 2021, 29, 36-41.	0.3	5
171	Imaging Infrared Plasmon Hybridization in Doped Semiconductor Nanocrystal Dimers. Journal of Physical Chemistry Letters, 2021, 12, 10270-10276.	4.6	5
172	Identification of light elements in silicon nitride by aberration-corrected scanning transmission electron microscopy. Ultramicroscopy, 2012, 123, 74-79.	1.9	4
173	Ptychographic Imaging in an Aberration Corrected STEM. Microscopy and Microanalysis, 2015, 21, 1219-1220.	0.4	4
174	Proposal for a three-dimensional magnetic measurement method with nanometer-scale depth resolution. Physical Review B, 2018, 98, .	3.2	4
175	Prospect for detecting magnetism of a single impurity atom using electron magnetic chiral dichroism. Physical Review B, 2019, 100, .	3.2	4
176	Emerging Electron Microscopy Techniques for Probing Functional Interfaces in Energy Materials. Angewandte Chemie, 2020, 132, 1400-1412.	2.0	4
177	High spatial and energy resolution electron energy loss spectroscopy of the magnetic and electric excitations in plasmonic nanorod oligomers. Optics Express, 2021, 29, 4661.	3.4	4
178	Monochromatic STEM-EELS for Correlating the Atomic Structure and Optical Properties of Two-Dimensional Materials. Microscopy and Microanalysis, 2014, 20, 96-97.	0.4	3
179	The quest for inorganic fullerenes. Journal of Applied Physics, 2015, 118, 134302.	2.5	3
180	Structural and superconducting features of Tl-1223 prepared at ambient pressure. Superconductor Science and Technology, 2015, 28, 115006.	3.5	3

#	Article	IF	CITATIONS
181	Vorticity in electron beams: Definition, properties, and its relationship with magnetism. Physical Review B, 2016, 94, .	3.2	3
182	Plasmon Hybridization in Nanorhombus Assemblies. Journal of Physical Chemistry C, 2020, 124, 27009-27016.	3.1	3
183	Mapping Magnetic Properties of Materials At Atomic Spatial Resolution. Microscopy and Microanalysis, 2015, 21, 499-500.	0.4	2
184	Mapping Magnetic Ordering With Aberrated Electron Probes in STEM. Microscopy and Microanalysis, 2016, 22, 1676-1677.	0.4	2
185	Atomic and electronic structure of Ti substitution in Ca3Co4O9. Journal of Applied Physics, 2016, 120, 205105.	2.5	2
186	Quaternary Alloys: Thermally Induced 2D Alloyâ€Heterostructure Transformation in Quaternary Alloys (Adv. Mater. 45/2018). Advanced Materials, 2018, 30, 1870344.	21.0	2
187	Atomic-Scale Identification of Planar Defects in Cesium Lead Bromide Perovskite Nanocrystals. Microscopy and Microanalysis, 2018, 24, 100-101.	0.4	2
188	Towards Nanometer-Scale Three-Dimensional Magnetic Studies with Atomic Size Electron Vortex Beams. Microscopy and Microanalysis, 2018, 24, 918-919.	0.4	2
189	Exploring electronic coupling of optical and phonon excitations at the nanoscale. Microscopy and Microanalysis, 2021, 27, 1202-1203.	0.4	2
190	Metalâ€Nitrogenâ€Carbon Clusterâ€Decorated Titanium Carbide is a Durable and Inexpensive Oxygen Reduction Reaction Electrocatalyst. ChemSusChem, 2021, 14, 4680-4689.	6.8	2
191	Modeling ellipsometry and electron energy loss spectroscopy of graphene. , 2014, , .		1
192	Fast Aberration Measurement in Multi-Dimensional STEM. Microscopy and Microanalysis, 2016, 22, 252-253.	0.4	1
193	Revealing the Bonding of Nitrogen Impurities in Monolayer Graphene. Microscopy and Microanalysis, 2017, 23, 1750-1751.	0.4	1
194	2D Materials: Quaternary 2D Transition Metal Dichalcogenides (TMDs) with Tunable Bandgap (Adv.) Tj ETQq0 0 (O rgBT/Ov	erlock 10 Tf
195	2D Materials: Re Doping in 2D Transition Metal Dichalcogenides as a New Route to Tailor Structural Phases and Induced Magnetism (Adv. Mater. 43/2017). Advanced Materials, 2017, 29, .	21.0	1
196	Directly Identifying Phase Segregation in 2D Quaternary Alloys. Microscopy and Microanalysis, 2017, 23, 1438-1439.	0.4	1
197	Image and Spectrum Image Denoising under the local low Rank Assumption. Microscopy and Microanalysis, 2018, 24, 578-579.	0.4	1
198	Atomic-resolution electric field measurements with a universal detector. Microscopy and Microanalysis, 2018, 24, 114-115.	0.4	1

#	Article	IF	CITATIONS
199	Probing the Proximity of Magnetic Dichroic Signal in Electron Magnetics Circular Dichroism by Atomic Sized Electron Vortex Beam and Four Fold Astigmatic Beams Microscopy and Microanalysis, 2018, 24, 922-923.	0.4	1
200	Towards topological spectroscopy in the electron microscope with atomic resolution. Microscopy and Microanalysis, 2018, 24, 926-927.	0.4	1
201	Vibrational Spectroscopy of Liquid Water by Monochromated Aloof EELS. Microscopy and Microanalysis, 2018, 24, 422-423.	0.4	1
202	Determining the 3D Atomic Coordinates and Crystal Defects in 2D Materials with Picometer Precision. Microscopy and Microanalysis, 2019, 25, 404-405.	0.4	1
203	Atomic Electron Tomography: Past, Present and Future. Microscopy and Microanalysis, 2020, 26, 652-654.	0.4	1
204	Study of the Atomic Structures of Si3N4/CeO2-x and Si3N4/SiO2 Interfaces Using STEM and First-Principles Methods. Microscopy and Microanalysis, 2009, 15, 1014-1015.	0.4	0
205	Direct Imaging of Light Elements in Aberration-Corrected Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2009, 15, 1480-1481.	0.4	0
206	Atomic Imaging and Spectroscopy of Two-Dimensional Materials. Microscopy and Microanalysis, 2014, 20, 92-93.	0.4	0
207	Imaging and Spectroscopy of Graphene/Hexagonal Boron Nitride Lateral Heterostructure Interfaces. Microscopy and Microanalysis, 2014, 20, 94-95.	0.4	0
208	Low-Loss Imaging of Defect Structures in Two Dimensional Materials Using Aberration Corrected Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2016, 22, 1410-1411.	0.4	0
209	Single Atom Imaging and Spectroscopy of Impurities in 2D Materials. Microscopy and Microanalysis, 2016, 22, 862-863.	0.4	0
210	Optical signatures of defects in low temperature Raman and photoluminescence spectra of 2D crystals (Conference Presentation)., 2017,,.		0
211	Observing Nanoscale Orbital Angular Momentum in Plasmon Vortices with Cathodoluminescence. Microscopy and Microanalysis, 2017, 23, 1694-1695.	0.4	0
212	Acquisition and Fast Analysis of Multi-Dimensional STEM Data. Microscopy and Microanalysis, 2017, 23, 168-169.	0.4	0
213	Near-Field Mid-Infrared Plasmonics in Complex Nanostructures with Monochromated Electron Energy Loss Spectroscopy. Microscopy and Microanalysis, 2017, 23, 1532-1533.	0.4	0
214	Novel EELS Experiments in the Newly Opened Monochromated Regime. Microscopy and Microanalysis, 2018, 24, 418-419.	0.4	0
215	EELS in STEM: the "Swiss Army Knife―of Spectroscopy. Microscopy and Microanalysis, 2019, 25, 620-621.	0.4	0
216	Damage-Free Nanoscale Isotopic Analysis of Biological Materials with Vibrational Electron Spectroscopy. Microscopy and Microanalysis, 2019, 25, 1088-1089.	0.4	0

#	Article	IF	CITATIONS
217	Electron-Beam Manipulation of Lattice Impurities in Graphene and Single-Walled Carbon Nanotubes. Microscopy and Microanalysis, 2019, 25, 938-939.	0.4	0
218	Defect-Induced Electronic Structure Changes in Cesium Lead Halide Nanocrystals. Microscopy and Microanalysis, 2019, 25, 660-661.	0.4	0
219	In-Situ Characterization of 2-Dim Materials at High Energy and Spatial Resolution. Microscopy and Microanalysis, 2019, 25, 17-18.	0.4	O
220	Graphene Optoelectronics: Atomicâ€Scale Spectroscopic Imaging of the Extremeâ€UV Optical Response of B―and Nâ€Doped Graphene (Adv. Funct. Mater. 52/2019). Advanced Functional Materials, 2019, 29, 1970356.	14.9	0
221	Leaning on a ledge. Nature Materials, 2020, 19, 1260-1261.	27.5	O
222	Electron effective mass determination across a \hat{l}^2 -(Al0.2Ga0.8)2O3/ $ \hat{l}^2$ -Ga2O3 interface by Kramers-Kronig analysis. Microscopy and Microanalysis, 2021, 27, 1168-1169.	0.4	0
223	Electron energy loss spectroscopy of sub-10 nm 2D MoS2 crystals. Microscopy and Microanalysis, 2021, 27, 1210-1211.	0.4	O
224	Microstructure Characterization of Nanoscale Materials and Interconnects., 2017,, 489-534.		0
225	Ultrahigh Spatial Resolution of Mid-Infrared Optical Excitations with Monochromated Electron Energy-Loss Spectroscopy. , 2020, , .		O