
Thierry Jarde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1189205/publications.pdf Version: 2024-02-01

Τηιέρον Ιλόνε

#	Article	IF	CITATIONS
1	Molecular mechanisms of leptin and adiponectin in breast cancer. European Journal of Cancer, 2011, 47, 33-43.	1.3	218
2	Involvement of adiponectin and leptin in breast cancer: clinical and in vitro studies. Endocrine-Related Cancer, 2009, 16, 1197-1210.	1.6	131
3	Leptin and leptin receptor involvement in cancer development: a study on human primary breast carcinoma. Oncology Reports, 2008, 19, 905-11.	1.2	93
4	Wnt and Neuregulin1/ErbB signalling extends 3D culture of hormone responsive mammary organoids. Nature Communications, 2016, 7, 13207.	5.8	88
5	Mesenchymal Niche-Derived Neuregulin-1 Drives Intestinal Stem Cell Proliferation and Regeneration of Damaged Epithelium. Cell Stem Cell, 2020, 27, 646-662.e7.	5.2	82
6	<i>Clostridioides difficile</i> infection damages colonic stem cells via TcdB, impairing epithelial repair and recovery from disease. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8064-8073.	3.3	70
7	<scp>ADAM</scp> 17 selectively activates the <scp>IL</scp> â€6 transâ€signaling/ <scp>ERK MAPK</scp> axis in <scp>KRAS</scp> â€addicted lung cancer. EMBO Molecular Medicine, 2019, 11, .	3.3	65
8	Snai1 regulates cell lineage allocation and stem cell maintenance in the mouse intestinal epithelium. EMBO Journal, 2015, 34, 1319-1335.	3.5	50
9	Leptin Induces a Proliferative Response in Breast Cancer Cells but Not in Normal Breast Cells. Nutrition and Cancer, 2014, 66, 645-655.	0.9	47
10	Conditional Disruption of Axin1 Leads to Development of Liver Tumors in Mice. Gastroenterology, 2012, 143, 1650-1659.	0.6	45
11	In vivo and in vitro models for the therapeutic targeting of Wnt signaling using a Tet-OΔN89β-catenin system. Oncogene, 2013, 32, 883-893.	2.6	45
12	Adiponectin and leptin expression in primary ductal breast cancer and in adjacent healthy epithelial and myoepithelial tissue. Histopathology, 2008, 53, 484-487.	1.6	41
13	Leptin and leptin receptor involvement in cancer development: a study on human primary breast carcinoma. Oncology Reports, 2008, , .	1.2	38
14	Patient-Derived Colorectal Cancer Organoids Upregulate Revival Stem Cell Marker Genes following Chemotherapeutic Treatment. Journal of Clinical Medicine, 2020, 9, 128.	1.0	38
15	Adiponectin, an Anti-Carcinogenic Hormone? a Systematic Review on Breast, Colorectal, Liver and Prostate Cancer. Current Medicinal Chemistry, 2012, 19, 5501-5512.	1.2	37
16	New Insights into Anticarcinogenic Properties of Adiponectin. Vitamins and Hormones, 2012, 90, 397-417.	0.7	31
17	Brg1 is required for stem cell maintenance in the murine intestinal epithelium in a tissue-specific manner. Stem Cells, 2013, 31, 2457-2466.	1.4	31
18	Personalized Medicine—Current and Emerging Predictive and Prognostic Biomarkers in Colorectal Cancer. Cancers, 2020, 12, 812.	1.7	30

THIERRY JARDE

#	Article	IF	CITATIONS
19	A Versatile Strategy for Isolating a Highly Enriched Population of Intestinal Stem Cells. Stem Cell Reports, 2016, 6, 321-329.	2.3	27
20	Source and Impact of the EGF Family of Ligands on Intestinal Stem Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 685665.	1.8	26
21	Intestinal renin–angiotensin system is stimulated after deletion of Lkb1. Gut, 2012, 61, 202-213.	6.1	23
22	Wnt signalling in murine postnatal mammary gland development. Acta Physiologica, 2012, 204, 118-127.	1.8	23
23	New Monoclonal Antibodies to Defined Cell Surface Proteins on Human Pluripotent Stem Cells. Stem Cells, 2017, 35, 626-640.	1.4	18
24	ERBB3 Positively Correlates with Intestinal Stem Cell Markers but Marks a Distinct Non Proliferative Cell Population in Colorectal Cancer. PLoS ONE, 2015, 10, e0138336.	1.1	16
25	Evaluation of FGFR targeting in breast cancer through interrogation of patient-derived models. Breast Cancer Research, 2021, 23, 82.	2.2	14
26	Modeling colorectal cancer: A bioâ€resource of 50 patientâ€derived organoid lines. Journal of Gastroenterology and Hepatology (Australia), 2022, 37, 898-907.	1.4	9
27	Modelling Intestinal Carcinogenesis Using In Vitro Organoid Cultures. Methods in Molecular Biology, 2018, 1725, 41-52.	0.4	7
28	Molecular signature of interleukin-22 in colon carcinoma cells and organoid models. Translational Research, 2020, 216, 1-22.	2.2	6
29	Intestinal stem cell aging signature reveals a reprogramming strategy to enhance regenerative potential. Npj Regenerative Medicine, 2022, 7, .	2.5	4
30	Microarray profiling to analyze the effect of Snai1 loss in mouse intestinal epithelium. Genomics Data, 2015, 5, 106-108.	1.3	3
31	Aging of intestinal stem cells and associated niche. Advances in Stem Cells and Their Niches, 2020, 4, 25-40.	0.1	1