Tony Bacic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1189203/publications.pdf Version: 2024-02-01

		22132	23514
183	14,127	59	111
papers	citations	h-index	g-index
193	193	193	15230
all docs	docs citations	times ranked	citing authors

TONY BACIC

#	Article	IF	CITATIONS
1	FunRich: An open access standalone functional enrichment and interaction network analysis tool. Proteomics, 2015, 15, 2597-2601.	1.3	1,145
2	Determining the polysaccharide composition of plant cell walls. Nature Protocols, 2012, 7, 1590-1607.	5.5	557
3	Heterogeneity in the chemistry, structure and function of plant cell walls. Nature Chemical Biology, 2010, 6, 724-732.	3.9	509
4	Cellulose Synthase-Like CslF Genes Mediate the Synthesis of Cell Wall (1,3;1,4)-Â-D-Glucans. Science, 2006, 311, 1940-1942.	6.0	422
5	Arabinogalactan-Proteins: Key Regulators at the Cell Surface?. Plant Physiology, 2010, 153, 403-419.	2.3	419
6	Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. Journal of Experimental Botany, 2009, 60, 4089-4103.	2.4	375
7	The Fasciclin-Like Arabinogalactan Proteins of Arabidopsis. A Multigene Family of Putative Cell Adhesion Molecules. Plant Physiology, 2003, 133, 1911-1925.	2.3	349
8	O-Glycosylated Cell Wall Proteins Are Essential in Root Hair Growth. Science, 2011, 332, 1401-1403.	6.0	287
9	High-throughput mapping of cell-wall polymers within and between plants using novel microarrays. Plant Journal, 2007, 50, 1118-1128.	2.8	286
10	The CesA Gene Family of Barley. Quantitative Analysis of Transcripts Reveals Two Groups of Co-Expressed Genes. Plant Physiology, 2004, 134, 224-236.	2.3	275
11	The complex structures of arabinogalactan-proteins and the journey towards understanding function. Plant Molecular Biology, 2001, 47, 161-176.	2.0	234
12	Fruit Calcium: Transport and Physiology. Frontiers in Plant Science, 2016, 7, 569.	1.7	233
13	Changes in Cell Wall Composition during Ripening of Grape Berries. Plant Physiology, 1998, 118, 783-792.	2.3	229
14	The charophycean green algae provide insights into the early origins of plant cell walls. Plant Journal, 2011, 68, 201-211.	2.8	226
15	Using Genomic Resources to Guide Research Directions. The Arabinogalactan Protein Gene Family as a Test Case. Plant Physiology, 2002, 129, 1448-1463.	2.3	219
16	The Classical Arabinogalactan Protein Gene Family of Arabidopsis. Plant Cell, 2000, 12, 1751-1767.	3.1	211
17	Mass spectrometry imaging for plant biology: a review. Phytochemistry Reviews, 2016, 15, 445-488.	3.1	210
18	The Genetics and Transcriptional Profiles of the Cellulose Synthase-Like <i>HvCslF</i> Gene Family in Barley. Plant Physiology, 2008, 146, 1821-1833.	2.3	204

#	Article	IF	CITATIONS
19	Arabinogalactan Proteins Are Required for Apical Cell Extension in the Moss Physcomitrella patens. Plant Cell, 2005, 17, 3051-3065.	3.1	179
20	Overâ€expression of specific <i>HvCslF</i> cellulose synthaseâ€like genes in transgenic barley increases the levels of cell wall (1,3;1,4)â€l²â€ <scp>d</scp> â€glucans and alters their fine structure. Plant Biotechnology Journal, 2011, 9, 117-135.	4.1	171
21	REVIEW: Variability in Fine Structures of Noncellulosic Cell Wall Polysaccharides from Cereal Grains: Potential Importance in Human Health and Nutrition. Cereal Chemistry, 2010, 87, 272-282.	1.1	167
22	(1,3;1,4)-β-D-Glucans in Cell Walls of the Poaceae, Lower Plants, and Fungi: A Tale of Two Linkages. Molecular Plant, 2009, 2, 873-882.	3.9	164
23	Plant cell walls: the skeleton of the plant world. Functional Plant Biology, 2010, 37, 357.	1.1	161
24	Root cell wall solutions for crop plants in saline soils. Plant Science, 2018, 269, 47-55.	1.7	159
25	Cell-Type-Specific H ⁺ -ATPase Activity in Root Tissues Enables K ⁺ Retention and Mediates Acclimation of Barley (<i>Hordeum vulgare</i>) to Salinity Stress. Plant Physiology, 2016, 172, 2445-2458.	2.3	158
26	Pollen Tubes of Nicotiana alata Express Two Genes from Different Î ² -Glucan Synthase Families. Plant Physiology, 2001, 125, 2040-2052.	2.3	152
27	Mixedâ€linkage (1→3),(1→4)â€Î² <scp>â€dâ€</scp> glucan is not unique to the Poales and is an abundant comµ <i>Equisetum arvense</i> cell walls. Plant Journal, 2008, 54, 510-521.	ponent of	151
28	Characterization of the Arabidopsis Lysine-Rich Arabinogalactan-Protein AtAGP17 Mutant (rat1) That Results in a Decreased Efficiency of Agrobacterium Transformation. Plant Physiology, 2004, 135, 2162-2171.	2.3	149
29	Root spatial metabolite profiling of two genotypes of barley <i>(Hordeum vulgare</i> L.) reveals differences in response to short-term salt stress. Journal of Experimental Botany, 2016, 67, 3731-3745.	2.4	137
30	Arabinogalactan-proteins and the research challenges for these enigmatic plant cell surface proteoglycans. Frontiers in Plant Science, 2012, 3, 140.	1.7	135
31	Wine Protein Haze: Mechanisms of Formation and Advances in Prevention. Journal of Agricultural and Food Chemistry, 2015, 63, 4020-4030.	2.4	129
32	Differential accumulation of callose, arabinoxylan and cellulose in nonpenetrated versus penetrated papillae on leaves of barley infected with <i>Blumeria graminis</i> f. sp. <i>hordei</i> . New Phytologist, 2014, 204, 650-660.	3.5	125
33	Evolution and development of cell walls in cereal grains. Frontiers in Plant Science, 2014, 5, 456.	1.7	124
34	Revised Phylogeny of the <i>Cellulose Synthase</i> Gene Superfamily: Insights into Cell Wall Evolution. Plant Physiology, 2018, 177, 1124-1141.	2.3	118
35	Preparation of plant cells for transmission electron microscopy to optimize immunogold labeling of carbohydrate and protein epitopes. Nature Protocols, 2012, 7, 1716-1727.	5.5	112
36	Hitting the Wall—Sensing and Signaling Pathways Involved in Plant Cell Wall Remodeling in Response to Abiotic Stress. Plants, 2018, 7, 89.	1.6	110

#	Article	IF	CITATIONS
37	Arabidopsis leucine-rich repeat extensin (LRX) proteins modify cell wall composition and influence plant growth. BMC Plant Biology, 2015, 15, 155.	1.6	109
38	The response of the maize nitrate transport system to nitrogen demand and supply across the lifecycle. New Phytologist, 2013, 198, 82-94.	3.5	108
39	Grape marc as a source of carbohydrates for bioethanol: Chemical composition, pre-treatment and saccharification. Bioresource Technology, 2015, 193, 76-83.	4.8	105
40	Effects of structural variation in xyloglucan polymers on interactions with bacterial cellulose. American Journal of Botany, 2006, 93, 1402-1414.	0.8	95
41	Regulation of Meristem Morphogenesis by Cell Wall Synthases in Arabidopsis. Current Biology, 2016, 26, 1404-1415.	1.8	89
42	Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proceedings of the United States of America, 2015, 112, 5767-5772.	3.3	88
43	Arabinogalactan proteins have deep roots in eukaryotes: identification of genes and epitopes in brown algae and their role in <i>Fucus serratus</i> embryo development. New Phytologist, 2016, 209, 1428-1441.	3.5	87
44	Current challenges in cell wall biology in the cereals and grasses. Frontiers in Plant Science, 2012, 3, 130.	1.7	84
45	Molecular characterization of a stigma-specific gene encoding an arabinogalactan-protein (AGP) from Nicotiana alata. Plant Journal, 1996, 9, 313-323.	2.8	83
46	Identification of a novel group of putative Arabidopsis thaliana β-(1,3)-galactosyltransferases. Plant Molecular Biology, 2008, 68, 43-59.	2.0	81
47	Evidence for land plant cell wall biosynthetic mechanisms in charophyte green algae. Annals of Botany, 2014, 114, 1217-1236.	1.4	80
48	THE COMPLEX POLYSACCHARIDES OF THE RAPHID DIATOM PINNULARIA VIRIDIS (BACILLARIOPHYCEAE)1. Journal of Phycology, 2003, 39, 543-554.	1.0	78
49	Unique Aspects of the Structure and Dynamics of Elementary I <i>β</i> Cellulose Microfibrils Revealed by Computational Simulations Â. Plant Physiology, 2015, 168, 3-17.	2.3	77
50	Molecular cloning of cDNAs encoding the protein backbones of arabinogalactan-proteins from the filtrate of suspension-cultured cells of Pyrus communis and Nicotiana alata. Plant Journal, 1995, 8, 269-281.	2.8	74
51	KNS4/UPEX1: A Type II Arabinogalactan <i>β</i> -(1,3)-Galactosyltransferase Required for Pollen Exine Development. Plant Physiology, 2017, 173, 183-205.	2.3	74
52	Post-translational Modifications of Arabinogalactan-peptides of Arabidopsis thaliana. Journal of Biological Chemistry, 2004, 279, 45503-45511.	1.6	73
53	Prospecting for Energy-Rich Renewable Raw Materials: Agave Leaf Case Study. PLoS ONE, 2015, 10, e0135382.	1.1	73
54	Detection of QTL for metabolic and agronomic traits in wheat with adjustments for variation at genetic loci that affect plant phenology. Plant Science, 2015, 233, 143-154.	1.7	72

#	Article	IF	CITATIONS
55	Regulation of Starch Stores by a Ca2+-Dependent Protein Kinase Is Essential for Viable Cyst Development in Toxoplasma gondii. Cell Host and Microbe, 2015, 18, 670-681.	5.1	71
56	Plant cell wall engineering: applications in biofuel production and improved human health. Current Opinion in Biotechnology, 2014, 26, 79-84.	3.3	67
57	Recent advances in <i>Cannabis sativa</i> genomics research. New Phytologist, 2021, 230, 73-89.	3.5	66
58	A (1→4)-β-mannan-specific monoclonal antibody and its use in the immunocytochemical location of galactomannans. Planta, 2001, 214, 235-242.	1.6	64
59	Interactions of Arabinoxylan and (1,3)(1,4)-β-Glucan with Cellulose Networks. Biomacromolecules, 2015, 16, 1232-1239.	2.6	63
60	Insights into the Evolution of Hydroxyproline-Rich Glycoproteins from 1000 Plant Transcriptomes. Plant Physiology, 2017, 174, 904-921.	2.3	62
61	Plant glycosylphosphatidylinositol anchored proteins at the plasma membrane ell wall nexus. Journal of Integrative Plant Biology, 2018, 60, 649-669.	4.1	62
62	Characterization of Ion Contents and Metabolic Responses to Salt Stress of Different Arabidopsis AtHKT1;1 Genotypes and Their Parental Strains. Molecular Plant, 2013, 6, 350-368.	3.9	61
63	Determining the Subcellular Location of Synthesis and Assembly of the Cell Wall Polysaccharide (1,3;) Tj ETQq1 1	0,784314 3.1	4 rgβT /Over
64	Pipeline to Identify Hydroxyproline-Rich Glycoproteins. Plant Physiology, 2017, 174, 886-903.	2.3	61
65	Quantitative structural organisation model for wheat endosperm cell walls: Cellulose as an important constituent. Carbohydrate Polymers, 2018, 196, 199-208.	5.1	61
66	Heterogeneous xylose-rich glycans are associated with extracellular glycoproteins from the biofouling diatomCraspedostauros australis(Bacillariophyceae). European Journal of Phycology, 2003, 38, 351-360.	0.9	60
67	Blue Light Regulates Secondary Cell Wall Thickening via MYC2/MYC4 Activation of the <i>NST1</i> -Directed Transcriptional Network in Arabidopsis. Plant Cell, 2018, 30, 2512-2528.	3.1	59
68	Isolation and characterization of cell walls from the mesocarp of mature grape berries (Vitis) Tj ETQq0 0 0 rgBT /C	Verlock 1 1.6	0 <u>Tf</u> 50 222
69	The impact of constitutive heterologous expression of a moss Na+ transporter on the metabolomes of rice and barley. Metabolomics, 2007, 3, 307-317.	1.4	57
70	Genome Wide Association Mapping for Arabinoxylan Content in a Collection of Tetraploid Wheats. PLoS ONE, 2015, 10, e0132787.	1.1	56
71	Genetic variation in the root growth response of barley genotypes to salinity stress. Functional Plant Biology, 2013, 40, 516.	1.1	53
72	The barley (<i>Hordeum vulgare</i>) cellulose synthaseâ€like D2 gene (<i>HvCslD2</i>) mediates penetration resistance to hostâ€adapted and nonhost isolates of the powdery mildew fungus. New Phytologist, 2016, 212, 421-433.	3.5	52

#	Article	IF	CITATIONS
73	Membrane fractionation and enrichment of callose synthase from pollen tubes of Nicotiana alata Link et Otto. Planta, 1998, 205, 380-388.	1.6	50
74	VARIATIONS IN THE SUBSTITUTED 3-LINKED MANNANS CLOSELY ASSOCIATED WITH THE SILICIFIED WALLS OF DIATOMS1. Journal of Phycology, 2005, 41, 1154-1161.	1.0	50
75	Are designer plant cell walls a realistic aspiration or will the plasticity of the plant's metabolism win out?. Current Opinion in Biotechnology, 2014, 26, 108-114.	3.3	50
76	Loss of LOFSEP Transcription Factor Function Converts Spikelet to Leaf-Like Structures in Rice. Plant Physiology, 2018, 176, 1646-1664.	2.3	49
77	The Dynamics of Transcript Abundance during Cellularization of Developing Barley Endosperm. Plant Physiology, 2016, 170, 1549-1565.	2.3	47
78	Differences in glycosyltransferase family 61 accompany variation in seed coat mucilage composition in <i>Plantago</i> spp Journal of Experimental Botany, 2016, 67, 6481-6495.	2.4	46
79	BETA/KAPPA-CARRAGEENANS AS EVIDENCE FOR CONTINUED SEPARATION OF THE FAMILIES DICRANEMATACEAE AND SARCODIACEAE (GIGARTINALES, RHODOPHYTA)1. Journal of Phycology, 1993, 29, 833-844.	1.0	44
80	Cell wall modification by the xyloglucan endotransglucosylase/hydrolase <scp>XTH19</scp> influences freezing tolerance after cold and subâ€zero acclimation. Plant, Cell and Environment, 2021, 44, 915-930.	2.8	43
81	Reâ€evaluation of the role of a transmitting tractâ€specific glycoprotein on pollen tube growth. Plant Journal, 1998, 13, 529-535.	2.8	42
82	Cell wall biomechanics: a tractable challenge in manipulating plant cell walls †fit for purpose'!. Current Opinion in Biotechnology, 2018, 49, 163-171.	3.3	42
83	Downâ€regulation of the <i>glucan synthaseâ€like 6</i> gene (<i>HvGsl6</i>) in barley leads to decreased callose accumulation and increased cell wall penetration by <i>Blumeria graminis</i> f. sp. <i>hordei</i> . New Phytologist, 2016, 212, 434-443.	3.5	41
84	The plant secretory pathway seen through the lens of the cell wall. Protoplasma, 2017, 254, 75-94.	1.0	41
85	The dynamics of cereal cyst nematode infection differ between susceptible and resistant barley cultivars and lead to changes in (1,3;1,4)â€Î²â€glucan levels and <scp><i>HvCslF</i></scp> gene transcript abundance. New Phytologist, 2015, 207, 135-147.	3.5	40
86	Genetic Diversity and Genome Wide Association Study of β-Glucan Content in Tetraploid Wheat Grains. PLoS ONE, 2016, 11, e0152590.	1.1	40
87	The Barley Genome Sequence Assembly Reveals Three Additional Members of the CslF (1,3;1,4)-β-Glucan Synthase Gene Family. PLoS ONE, 2014, 9, e90888.	1.1	39
88	Structural Analysis and Molecular Model of a Self-Incompatibility RNase from Wild Tomato1. Plant Physiology, 1998, 116, 463-469.	2.3	38
89	Hyphal cell walls from the plant pathogen <i>Rhynchosporium secalis</i> contain (1,3/1,6)â€Î²â€ <scp>d</scp> â€glucans, galacto―and rhamnomannans, (1,3;1,4)â€Î²â€ <scp>d</scp> â€glucans FEBS Journal, 2009, 276, 3698-3709.	s and chiti	n.38
90	A Customized Gene Expression Microarray Reveals That the Brittle Stem Phenotype <i>fs2</i> of Barley Is Attributable to a Retroelement in the <i>HvCesA4</i> Cellulose Synthase Gene Â. Plant Physiology, 2010, 153, 1716-1728.	2.3	37

#	Article	IF	CITATIONS
91	(1,3;1,4)-Ĵ²-Glucan Biosynthesis by the CSLF6 Enzyme: Position and Flexibility of Catalytic Residues Influence Product Fine Structure. Biochemistry, 2016, 55, 2054-2061.	1.2	37
92	N-linked Glycan Micro-heterogeneity in Glycoproteins of Arabidopsis. Molecular and Cellular Proteomics, 2018, 17, 413-421.	2.5	37
93	Arabinogalactan-proteins of Zostera marina L. contain unique glycan structures and provide insight into adaption processes to saline environments. Scientific Reports, 2020, 10, 8232.	1.6	37
94	Role of a callose synthase zymogen in regulating wall deposition in pollen tubes of Nicotiana alata Link et Otto. Planta, 1999, 208, 528-538.	1.6	36
95	Metabolic profiling of transgenic wheat over-expressing the high-molecular-weight Dx5 glutenin subunit. Metabolomics, 2009, 5, 239-252.	1.4	36
96	Isolation and structural elucidation by 2D NMR of planteose, a major oligosaccharide in the mucilage of chia (Salvia hispanica L.) seeds. Carbohydrate Polymers, 2017, 175, 231-240.	5.1	36
97	Targeted mutation of barley (1,3;1,4)â€Î²â€glucan synthases reveals complex relationships between the storage and cell wall polysaccharide content. Plant Journal, 2020, 104, 1009-1022.	2.8	35
98	MADS1 maintains barley spike morphology at high ambient temperatures. Nature Plants, 2021, 7, 1093-1107.	4.7	35
99	Functional Specialization of Cellulose Synthase Isoforms in a Moss Shows Parallels with Seed Plants. Plant Physiology, 2017, 175, 210-222.	2.3	34
100	A REVISION OF THE SYSTEMATICS OF THE NIZYMENIACEAE(GIGARTINALES, RHODOPHYTA) BASED ON POLYSACCHARIDES, ANATOMY, AND NUCLEOTIDE SEQUENCES1. Journal of Phycology, 1995, 31, 153-166.	1.0	33
101	Distribution, structure and biosynthetic gene families of (1,3;1,4)â€Î²â€glucan in <i>Sorghum bicolor</i> . Journal of Integrative Plant Biology, 2015, 57, 429-445.	4.1	33
102	Cracking the "Sugar Code― A Snapshot of N- and O-Glycosylation Pathways and Functions in Plants Cells. Frontiers in Plant Science, 2021, 12, 640919.	1.7	33
103	Characterisation of extracellular polysaccharides from suspension cultures of members of the Poaceae. Planta, 2000, 210, 261-268.	1.6	32
104	EXIMS: an improved data analysis pipeline based on a new peak picking method for EXploring Imaging Mass Spectrometry data. Bioinformatics, 2015, 31, 3198-3206.	1.8	31
105	Accumulation of volatile phenol glycoconjugates in grapes following grapevine exposure to smoke and potential mitigation of smoke taint by foliar application of kaolin. Planta, 2019, 249, 941-952.	1.6	31
106	Breaking an impasse in pectin biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5639-5640.	3.3	30
107	A Genome Wide Association Study of arabinoxylan content in 2-row spring barley grain. PLoS ONE, 2017, 12, e0182537.	1.1	29
108	An exo-β-(1→3)-d-galactanase from Streptomyces sp. provides insights into type II arabinogalactan structure. Carbohydrate Research, 2012, 352, 70-81.	1.1	28

#	Article	IF	CITATIONS
109	DEFECTIVE KERNEL1 (DEK1) Regulates Cell Walls in the Leaf Epidermis. Plant Physiology, 2016, 172, 2204-2218.	2.3	28
110	Isolation of tissues and preservation of <scp>RNA</scp> from intact, germinated barley grain. Plant Journal, 2017, 91, 754-765.	2.8	28
111	Fasciclin-Like Arabinogalactan-Protein 16 (FLA16) Is Required for Stem Development in Arabidopsis. Frontiers in Plant Science, 2020, 11, 615392.	1.7	28
112	A Golgi UDP-GlcNAc transporter delivers substrates for N-linked glycans and sphingolipids. Nature Plants, 2018, 4, 792-801.	4.7	27
113	FLA11 and FLA12 glycoproteins fineâ€ŧune stem secondary wall properties in response to mechanical stresses. New Phytologist, 2022, 233, 1750-1767.	3.5	27
114	Characterization of protein N-glycosylation by tandem mass spectrometry using complementary fragmentation techniques. Frontiers in Plant Science, 2015, 6, 674.	1.7	26
115	Integrative Multi-omics Analyses of Barley Rootzones under Salinity Stress Reveal Two Distinctive Salt Tolerance Mechanisms. Plant Communications, 2020, 1, 100031.	3.6	26
116	CARRAGEENANS FROM AUSTRALIAN REPRESENTATIVES OF THE FAMILY CYSTOCLONIACEAE (GIGARTINALES,) Tj AUSTROCLONIUM TO THE FAMILY ARESCHOUGIACEAE. Journal of Phycology, 1998, 34, 515-535.	ETQq0 0 0 1.0) rgBT /Over 25
117	A Novel (1,4)-β-Linked Glucoxylan Is Synthesized by Members of the <i>Cellulose Synthase-Like F</i> Gene Family in Land Plants. ACS Central Science, 2019, 5, 73-84.	5.3	25
118	Morphology, Carbohydrate Distribution, Gene Expression, and Enzymatic Activities Related to Cell Wall Hydrolysis in Four Barley Varieties during Simulated Malting. Frontiers in Plant Science, 2017, 8, 1872.	1.7	24
119	Biochemical Compositional Analysis and Kinetic Modeling of Hydrothermal Carbonization of Australian Saltbush. Energy & Fuels, 2019, 33, 12469-12479.	2.5	24
120	Barley grain (1,3;1,4)-β-glucan content: effects of transcript and sequence variation in genes encoding the corresponding synthase and endohydrolase enzymes. Scientific Reports, 2019, 9, 17250.	1.6	24
121	A Genome-Wide Association Study for Culm Cellulose Content in Barley Reveals Candidate Genes Co-Expressed with Members of the CELLULOSE SYNTHASE A Gene Family. PLoS ONE, 2015, 10, e0130890.	1.1	24
122	Genetic and environmental factors contribute to variation in cell wall composition in mature desi chickpea (<i>Cicer arietinum</i> L.) cotyledons. Plant, Cell and Environment, 2018, 41, 2195-2208.	2.8	23
123	Functional Characterization of a Glycosyltransferase from the Moss <i>Physcomitrella patens</i> Involved in the Biosynthesis of a Novel Cell Wall Arabinoglucan. Plant Cell, 2018, 30, 1293-1308.	3.1	22
124	Biosynthesis of lipophosphoglycan from <i>Leishmania major</i> : solubilization and characterization of a (l² 1-3)-galactosyltransferase. Biochemical Journal, 1996, 317, 247-255.	1.7	21
125	Biochemical and molecular changes associated with heteroxylan biosynthesis in Neolamarckia cadamba (Rubiaceae) during xylogenesis. Frontiers in Plant Science, 2014, 5, 602.	1.7	20
126	Dissecting the Genetic Basis for Seed Coat Mucilage Heteroxylan Biosynthesis in Plantago ovata Using Gamma Irradiation and Infrared Spectroscopy. Frontiers in Plant Science, 2017, 8, 326.	1.7	20

#	Article	IF	CITATIONS
127	Evolution of Sequence-Diverse Disordered Regions in a Protein Family: Order within the Chaos. Molecular Biology and Evolution, 2020, 37, 2155-2172.	3.5	20
128	The Role of Brachypodium distachyon Wall-Associated Kinases (WAKs) in Cell Expansion and Stress Responses. Cells, 2020, 9, 2478.	1.8	18
129	Structure of the N-Linked Oligosaccharides from Tridacnin, a Lectin Found in the Haemolymph of the Giant Clam Hippopus Hippopus. FEBS Journal, 1995, 232, 873-880.	0.2	17
130	The reducing end sequence of wheat endosperm cell wall arabinoxylans. Carbohydrate Research, 2014, 386, 23-32.	1.1	17
131	Differential expression of the HvCslF6 gene late in grain development may explain quantitative differences in $(1,3;1,4)$ - $\hat{1}^2$ -glucan concentration in barley. Molecular Breeding, 2015, 35, 20.	1.0	17
132	A Glycosyltransferase from <i>Nicotiana alata</i> Pollen Mediates Synthesis of a Linear (1,5)-α-L-Arabinan When Expressed in Arabidopsis. Plant Physiology, 2016, 170, 1962-1974.	2.3	17
133	Transcriptional and biochemical analyses of gibberellin expression and content in germinated barley grain. Journal of Experimental Botany, 2020, 71, 1870-1884.	2.4	17
134	Genome-wide association study reveals the genetic complexity of fructan accumulation patterns in barley grain. Journal of Experimental Botany, 2021, 72, 2383-2402.	2.4	17
135	Asparagus Spears as a Model to Study Heteroxylan Biosynthesis during Secondary Wall Development. PLoS ONE, 2015, 10, e0123878.	1.1	17
136	Regioselective acylation of several polyhydroxylated natural compounds byCandida antarcticalipase B. Biocatalysis and Biotransformation, 2005, 23, 109-116.	1.1	16
137	Genetics and physiology of cell wall polysaccharides in the model C4 grass, Setaria viridis spp. BMC Plant Biology, 2015, 15, 236.	1.6	16
138	Transcript Profiling of MIKCc MADS-Box Genes Reveals Conserved and Novel Roles in Barley Inflorescence Development. Frontiers in Plant Science, 2021, 12, 705286.	1.7	15
139	Mucin-Like Proteophosphoglycans from the Protozoan Parasite Leishmania Trends in Glycoscience and Glycotechnology, 1999, 11, 53-71.	0.0	15
140	Disulphide Bonding in a Stylar Self-Incompatibility Ribonuclease of Nicotiana Alata. FEBS Journal, 1996, 242, 75-80.	0.2	14
141	CHEMISTRY, PROPERTIES, AND PHYLOGENETIC IMPLICATIONS OF THE METHYLATED CARRAGEENANS FROM RED ALGAE OF THE GENUS ARESCHOUGIA (ARESCHOUGIACEAE, GIGARTINALES, RHODOPHYTA). Journal of Phycology, 2001, 37, 1127-1137.	1.0	14
142	Plant cell wall polysaccharide biosynthesis: real progress in the identification of participating genes. Planta, 2005, 221, 309-312.	1.6	14
143	The gooâ€d stuff: <i>Plantago</i> as a myxospermous model with modern utility. New Phytologist, 2021, 229, 1917-1923.	3.5	14
144	The composition of Australian Plantago seeds highlights their potential as nutritionally-rich functional food ingredients. Scientific Reports, 2021, 11, 12692.	1.6	14

#	Article	IF	CITATIONS
145	Phylogenetic analysis and functional characterisation of strictosidine synthase-like genes in Arabidopsis thaliana. Functional Plant Biology, 2009, 36, 1098.	1.1	13
146	Genetics, Transcriptional Profiles, and Catalytic Properties of the UDP-Arabinose Mutase Family from Barley. Biochemistry, 2016, 55, 322-334.	1.2	13
147	Method for hullâ€less barley transformation and manipulation of grain mixedâ€linkage betaâ€glucan. Journal of Integrative Plant Biology, 2018, 60, 382-396.	4.1	13
148	A tandem liquid chromatography–mass spectrometry (LC–MS) method for profiling small molecules in complex samples. Metabolomics, 2015, 11, 1552-1562.	1.4	12
149	UDPâ€Api/UDPâ€Xyl synthases affect plant development by controlling the content of UDPâ€Api to regulate the RGâ€llâ€borate complex. Plant Journal, 2020, 104, 252-267.	2.8	12
150	The novel features of Plantago ovata seed mucilage accumulation, storage and release. Scientific Reports, 2020, 10, 11766.	1.6	12
151	The effect of zinc fertilisation and arbuscular mycorrhizal fungi on grain quality and yield of contrasting barley cultivars. Functional Plant Biology, 2020, 47, 122.	1.1	12
152	Cell surface carbohydrates of symbiotic dinoflagellates and their role in the establishment of cnidarian–dinoflagellate symbiosis. ISME Journal, 2022, 16, 190-199.	4.4	12
153	Nutritional properties of selected superfood extracts and their potential health benefits. PeerJ, 2021, 9, e12525.	0.9	12
154	Pyruvated carrageenans from Solieria robusta and its adelphoparasite Tikvahiella candida. Hydrobiologia, 1999, 398/399, 401-409.	1.0	11
155	Biotransformation of podophyllotoxin byHordeum vulgarecell suspension cultures. Biocatalysis and Biotransformation, 2007, 25, 1-8.	1.1	11
156	Biotransformation of ingenol-3-angelate in four plant cell suspension cultures. Biocatalysis and Biotransformation, 2009, 27, 186-194.	1.1	11
157	Exploratory analysis of high-throughput metabolomic data. Metabolomics, 2013, 9, 1311-1320.	1.4	11
158	Untargeted Metabolomic Analyses Reveal Chemical Complexity of Dioecious. Australian Journal of Chemistry, 2021, 74, 463-479.	0.5	11
159	Effects of Yariv dyes, arabinogalactan-protein binding reagents, on the growth and viability of Brazilian pine suspension culture cells. Trees - Structure and Function, 2010, 24, 391-398.	0.9	10
160	Effects of Excess Manganese on the Xylem Sap Protein Profile of Tomato (Solanum lycopersicum) as Revealed by Shotgun Proteomic Analysis. International Journal of Molecular Sciences, 2020, 21, 8863.	1.8	10
161	A small-scale fractionation pipeline for rapid analysis of seed mucilage characteristics. Plant Methods, 2020, 16, 20.	1.9	10
162	Extraction and characterization of agar from Australian Pterocladia lucida. Journal of Applied Phycology, 2004, 16, 41-48.	1.5	9

#	Article	IF	CITATIONS
163	Low-Input Fermentations of Agave tequilana Leaf Juice Generate High Returns on Ethanol Yields. Bioenergy Research, 2016, 9, 1142-1154.	2.2	9
164	Molecular Mechanism of Xylogenesis in Moso Bamboo (Phyllostachys edulis) Shoots during Cold Storage. Polymers, 2019, 11, 38.	2.0	9
165	Natural Variation in Ovule Morphology Is Influenced by Multiple Tissues and Impacts Downstream Grain Development in Barley (Hordeum vulgare L.). Frontiers in Plant Science, 2019, 10, 1374.	1.7	9
166	Hydrothermal Carbonization of Australian Saltbush. Energy & amp; Fuels, 2019, 33, 1157-1166.	2.5	9
167	A micro-scale method for determining relative metal-binding affinities of proteins. Molecular Biotechnology, 1997, 8, 215-218.	1.3	8
168	<i>Arabidopsis </i> <scp>DEFECTIVE KERNEL</scp> 1 regulates cell wall composition and axial growth in the inflorescence stem. Plant Direct, 2017, 1, e00027.	0.8	8
169	Biochemical and Functional Characterization of GALT8, an Arabidopsis GT31 β-(1,3)-Galactosyltransferase That Influences Seedling Development. Frontiers in Plant Science, 2021, 12, 678564.	1.7	8
170	A Pipeline towards the Biochemical Characterization of the Arabidopsis GT14 Family. International Journal of Molecular Sciences, 2021, 22, 1360.	1.8	7
171	Epigenetic mechanisms involved in intrauterine growth restriction and aberrant kidney development and function. Journal of Developmental Origins of Health and Disease, 2021, 12, 952-962.	0.7	7
172	Proteomic analysis of Pteropus alecto kidney cells in response to the viral mimic, Poly I:C. Proteome Science, 2015, 13, 25.	0.7	6
173	Variation in barley (1Â→ 3, 1Â→Â4)-β-glucan endohydrolases reveals novel allozymes with increased thermostability. Theoretical and Applied Genetics, 2017, 130, 1053-1063.	1.8	6
174	Prospecting for Energy-Rich Renewable Raw Materials: Sorghum Stem Case Study. PLoS ONE, 2016, 11, e0156638.	1.1	6
175	Effect of Processing on Viscosity and Molecular Weight of (1,3)(1,4)â€Î²â€Glucan in Western Australian Oat Cultivars. Cereal Chemistry, 2017, 94, 625-632.	1.1	5
176	Structure of the Nâ€Linked Oligosaccharides from Tridacnin, a Lectin Found in the Haemolymph of the Giant Clam <i>Hippopus Hippopus</i> . FEBS Journal, 1995, 232, 873-880.	0.2	3
177	Enrichment of Golgi Membranes from Triticum aestivum (Wheat) Seedlings. Methods in Molecular Biology, 2017, 1511, 131-150.	0.4	3
178	Rain events at maturity severely impact the seed quality of psyllium (<i>Plantago ovata</i> Forssk.). Journal of Agronomy and Crop Science, 2022, 208, 567-581.	1.7	3
179	Identification of truncated forms of lipophosphoglycan in mutant cloned lines ofLeishmania major that are deficient in mature lipophosphoglycan. Zeitschrift Für Parasitenkunde (Berlin, Germany), 1993, 79, 435-438.	0.8	2
180	Regulation of cell wall genes in response to DEFECTIVE KERNEL1 (DEK1)-induced cell wall changes. Plant Signaling and Behavior, 2017, 12, e1345405.	1.2	2

#	Article	IF	CITATIONS
181	Analysis of Genetic Diversity in the Traditional Chinese Medicine Plant â€~Kushen' (Sophora flavescens) Tj ET	Qq1 _{.7} 1 0.7	784314 rgBT
182	Novel Barley (1→3,1→4)-β-Glucan Endohydrolase Alleles Confer Increased Enzyme Thermostability. Journal of Agricultural and Food Chemistry, 2017, 65, 421-428.	2.4	1
183	The cell wall polysaccharides of a photosynthetic relative of apicomplexans, <i>Chromera velia</i> . Journal of Phycology, 2021, 57, 1805-1809.	1.0	Ο