Keiji Fujimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1189012/publications.pdf Version: 2024-02-01

Κειμ Ειμιμότο

#	Article	IF	CITATIONS
1	Preparation of a deformable nanocapsule by living radical polymerization in a liposome. Polymer Journal, 2022, 54, 893-901.	2.7	0
2	Preparation of agarose xerogel nanoparticles by solvent evaporation from water nanodroplets. Polymer Journal, 2021, 53, 815-821.	2.7	2
3	Creation of porous polymeric membranes by accumulation of water nanodroplets in a miniemulsion system. Polymer Journal, 2020, 52, 1077-1083.	2.7	3
4	Controlled release and targeting of polypeptide-deposited liposomes by enzymatic degradation. Polymer Journal, 2019, 51, 1223-1230.	2.7	4
5	Generation of mucin gel particles with self-degradable and -releasable properties. Journal of Materials Chemistry B, 2018, 6, 781-788.	5.8	9
6	Preparation of free-standing hybrid colloidal membranes via assembly of liponanocapsules. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1010-1024.	3.5	3
7	Preparation of protein nano-objects by assembly of polymer-grafted proteins. Colloids and Surfaces B: Biointerfaces, 2016, 148, 503-510.	5.0	5
8	Fine-tuning in mineral cross-linking of biopolymer nanoparticle for incorporation and release of cargo. Colloids and Surfaces B: Biointerfaces, 2015, 136, 168-174.	5.0	4
9	Preparation of nanometre-sized spiral mineral via controlled mineralization using a gel particle as a template. RSC Advances, 2014, 4, 6027.	3.6	3
10	One-pot synthesis of fluorescent hybrid nanoparticles and their assembly into transparent and multi-coloured nanofilms. Journal of Materials Chemistry C, 2013, 1, 1231-1237.	5.5	4
11	Photoreactive nanotool for cell aggregation and immobilization. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 714-725.	3.5	2
12	Bio-inspired nanoreactor based on a miniemulsion system to create organic–inorganic hybrid nanoparticles and nanofilms. Journal of Materials Chemistry, 2012, 22, 3493.	6.7	26
13	Preparation of thermosensitive polymer nanoparticles by protein-mimetic cross-linking. Colloid and Polymer Science, 2012, 290, 1317-1325.	2.1	4
14	Production of nanofibers by atto-incubator-assisted assembly of urea using the particle array. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 399, 83-91.	4.7	1
15	Control in Mineralization by the Polysaccharide-Coated Liposome via the Counter-Diffusion of Ions. Chemistry of Materials, 2011, 23, 4701-4708.	6.7	37
16	Preparation and Assembly of Poly(arginine)-Coated Liposomes To Create a Free-Standing Bioscaffold. Langmuir, 2011, 27, 9576-9582.	3.5	11
17	In situ synthesis of polysaccharide nanoparticles via polyion complex of carboxymethyl cellulose and chitosan. Colloids and Surfaces B: Biointerfaces, 2011, 85, 343-348.	5.0	64
18	The Preparation of Sugar Polymer-Coated Nanocapsules by the Layer-by-Layer Deposition on the Liposome. Langmuir, 2009, 25, 10020-10025.	3.5	109

Кеіјі Ғијімото

#	Article	IF	CITATIONS
19	Preparation of Bionanocapsules by the Layer-by-Layer Deposition of Polypeptides onto a Liposome. Macromolecules, 2007, 40, 5122-5128.	4.8	61
20	Producing and patterning of nanocrystals using "atto-incubators―composed of the core-shell particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 290, 118-124.	4.7	3
21	A reduction-triggered delivery by a liposomal carrier possessing membrane-permeable ligands and a detachable coating. Colloids and Surfaces B: Biointerfaces, 2006, 49, 15-21.	5.0	57
22	Design and Synthesis of Biomolecular Devices Using Liposomes. Membrane, 2005, 30, 293-297.	0.0	0
23	Supramolecular Approaches for Cellular Modulation. , 2002, , .		1
24	Preparation of partly hydrophobized, crosslinked polyacrylamide particles by terpolymerization of acrylamide/N,N-methylenebisacrylamide/styrene in inverse microemulsion. Polymer International, 2000, 49, 358-366.	3.1	18
25	Improved refolding of denatured/reduced lysozyme using disulfide-carrying polymeric microspheres. Colloids and Surfaces B: Biointerfaces, 2000, 18, 137-144.	5.0	14
26	Renaturation of Reduced Ribonuclease A with a Microsphere-Induced Refolding System. Biotechnology Progress, 2000, 16, 248-253.	2.6	25
27	A Novel Preparation of Nonsymmetrical Microspheres Using the Langmuirâ^'Blodgett Technique. Langmuir, 2000, 16, 7882-7886.	3.5	77
28	Control of Cell Death by the Smart Polymeric Vehicle. Biomacromolecules, 2000, 1, 515-518.	5.4	28
29	Refolding of protein using thiol-carrying latex particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 153, 421-427.	4.7	23
30	Cell membrane dynamics and the induction of apoptosis by lipid compounds. FEBS Letters, 1999, 446, 113-116.	2.8	43
31	Preparation of Unsymmetrical Microspheres at the Interfaces. Langmuir, 1999, 15, 4630-4635.	3.5	132
32	Smart latexes for bioseparation. , 1998, 7, 253-258.		106
33	Inverse microemulsion polymerization of acrylamide in the presence ofN,N-dimethylacrylamide. Angewandte Makromolekulare Chemie, 1998, 258, 27-31.	0.2	19
34	Activity of enzymes immobilized on microspheres with thermosensitive hairs. Colloids and Surfaces B: Biointerfaces, 1997, 8, 311-319.	5.0	53
35	Chemical properties of water-soluble, nonionic azo compounds as initiators for emulsion polymerization. Journal of Polymer Science Part A, 1996, 34, 1237-1243.	2.3	12
36	Cytoplasmic calcium level and membrane fluidity of platelets contacting poly(acrylamide-co-methacrylic acid) particles with different surface properties. Journal of Biomaterials Science, Polymer Edition, 1996, 7, 253-264.	3.5	5

Кеіјі Ғијімото

#	Article	lF	CITATIONS
37	Control of enzymatic activity using thermosensitive polymers. Colloids and Surfaces B: Biointerfaces, 1995, 4, 275-285.	5.0	32
38	Interactions between temperature-sensitive hydrogel microspheres and granulocytes. Polymers for Advanced Technologies, 1995, 6, 534-540.	3.2	19
39	Enzyme immobilization on thermosensitive hydrogel microspheres. Colloids and Surfaces B: Biointerfaces, 1995, 4, 267-274.	5.0	72
40	Activation of human neutrophils by Arg-Gly-Asp-Ser immobilized on microspheres. Journal of Biomedical Materials Research Part B, 1994, 28, 397-404.	3.1	13
41	Influence of the structure of support microspheres on leucocyte activation by RGDS-carrying microspheres. Biomaterials, 1994, 15, 570-576.	11.4	10
42	Preparation and modification of monodisperse hydrogel microspheres. Polymer International, 1993, 30, 225-231.	3.1	43
43	Interactions between Thermosensitive Hydrogel Microspheres and Proteins. Journal of Intelligent Material Systems and Structures, 1993, 4, 184-189.	2.5	51
44	Mechanism of cytoplasmic calcium changes in platelets in contact with polystyrene and poly(acrylamide-co-methacrylic acid) surfaces. Journal of Biomaterials Science, Polymer Edition, 1993, 4, 199-215.	3.5	13
45	Activation of Leukocytes by Arg—Gly—Asp—Ser-Carrying Microspheres. ACS Symposium Series, 1993, , 220-227.	0.5	1
46	Preparation of peptide-carrying microspheres with bioactivity on platelets. Journal of Biomaterials Science, Polymer Edition, 1993, 4, 369-380.	3.5	12
47	Poly(vinyl alcohol) Hydrogels Prepared under Different Annealing Conditions and Their Interactions with Blood Components. ACS Symposium Series, 1993, , 228-242.	0.5	6
48	Hydrogel microspheres III. Temperature-dependent adsorption of proteins on poly-N-isopropylacrylamide hydrogel microspheres. Colloid and Polymer Science, 1992, 270, 53-57.	2.1	272
49	Functionalization of keratin nanoparticles by their internal modifications. Polymer Journal, 0, , .	2.7	0