

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11889918/publications.pdf Version: 2024-02-01

Y C LEI

#	Article	IF	CITATIONS
1	Molecular mechanisms for hyperinsulinaemia induced by overproduction of selenium-dependent glutathione peroxidase-1 in mice. Diabetologia, 2008, 51, 1515-1524.	2.9	132
2	Distribution of supplemental Escherichia coli AppA2 phytase activity in digesta of various gastrointestinal segments of young pigs1. Journal of Animal Science, 2007, 85, 1444-1452.	0.2	12
3	An improved method for a rapid determination of phytase activity in animal feed1. Journal of Animal Science, 2005, 83, 1062-1067.	0.2	53
4	Effects of combining three fungal phytases with a bacterial phytase on plasma phosphorus status of weanling pigs fed a corn-soy diet1. Journal of Animal Science, 2004, 82, 1725-1731.	0.2	22
5	Efficacy of a phytase derived from Escherichia coli and expressed in yeast on phosphorus utilization and bone mineralization in turkey poults. Poultry Science, 2003, 82, 1726-1732.	1.5	33
6	Effectiveness of an experimental consensus phytase in improving dietary phytate-phosphorus utilization by weanling pigs1. Journal of Animal Science, 2003, 81, 2751-2757.	0.2	29
7	Efficacy of an E. coli phytase expressed in yeast for releasing phytate-bound phosphorus in young chicks and pigs1. Journal of Animal Science, 2003, 81, 474-483.	0.2	156
8	Preferential Resistance of Dopaminergic Neurons to the Toxicity of Glutathione Depletion Is Independent of Cellular Glutathione Peroxidase and Is Mediated by Tetrahydrobiopterin. Journal of Neurochemistry, 2002, 74, 2305-2314.	2.1	41
9	Comparative impacts of glutathione peroxidase-1 gene knockout on oxidative stress induced by reactive oxygen and nitrogen species in mouse hepatocytes. Biochemical Journal, 2001, 359, 687.	1.7	16
10	Biotechnological development of effective phytases for mineral nutrition and environmental protection. Applied Microbiology and Biotechnology, 2001, 57, 474-481.	1.7	166
11	Glutathione peroxidaseâ€l gene knockout on body antioxidant defense in mice. BioFactors, 2001, 14, 93-99.	2.6	49
12	Lipopolysaccharide and interferon-γ-induced nitric oxide production and protein oxidation in mouse peritoneal macrophages are affected by glutathione peroxidase-1 gene knockout. Free Radical Biology and Medicine, 2001, 31, 450-459.	1.3	20
13	Opposite Roles of Selenium-dependent Glutathione Peroxidase-1 in Superoxide Generator Diquat- and Peroxynitrite-induced Apoptosis and Signaling. Journal of Biological Chemistry, 2001, 276, 43004-43009.	1.6	84
14	A new phytase expressed in yeast effectively improves the bioavailability of phytate phosphorus to weanling pigs Journal of Animal Science, 2000, 78, 668.	0.2	40
15	Site-Directed Mutagenesis Improves Catalytic Efficiency and Thermostability of Escherichia coli pH 2.5 Acid Phosphatase/Phytase Expressed in Pichia pastoris. Archives of Biochemistry and Biophysics, 2000, 382, 105-112.	1.4	109
16	Expression of the Aspergillus fumigatus Phytase Gene in Pichia pastoris and Characterization of the Recombinant Enzyme. Biochemical and Biophysical Research Communications, 2000, 268, 373-378.	1.0	110
17	Phytase Activity in Aspergillus fumigatus Isolates. Biochemical and Biophysical Research Communications, 2000, 275, 759-763.	1.0	19
18	Biochemical Characterization of Cloned Aspergillus fumigatus Phytase (phyA). Biochemical and Biophysical Research Communications, 2000, 275, 279-285.	1.0	38

X G Lei

#	Article	IF	CITATIONS
19	Nutritional Benefits of Phytase and Dietary Determinants of its Efficacy. Journal of Applied Animal Research, 2000, 17, 97-112.	0.4	66
20	Phytase improves iron bioavailability for hemoglobin synthesis in young pigs Journal of Animal Science, 1999, 77, 2135.	0.2	60
21	Seleniumâ€dependent cellular glutathione peroxidase protects mice against a proâ€oxidantâ€induced oxidation of NADPH, NADH, lipids, and protein. FASEB Journal, 1999, 13, 1467-1475.	0.2	114
22	High Levels of Dietary Vitamin E Do Not Replace Cellular Glutathione Peroxidase in Protecting Mice from Acute Oxidative Stress. Journal of Nutrition, 1999, 129, 1951-1957.	1.3	36
23	Knockout of cellular glutathione peroxidase gene renders mice susceptible to diquat-induced oxidative stress. Free Radical Biology and Medicine, 1999, 27, 605-611.	1.3	118
24	Cellular Glutathione Peroxidase Protects Mice Against Lethal Oxidative Stress Induced by Various Doses of Diquat. Proceedings of the Society for Experimental Biology and Medicine, 1999, 222, 164-169.	2.0	42
25	Dietary Intrinsic Phytate Protects Colon from Lipid Peroxidation in Pigs with a Moderately High Dietary Iron Intake. Proceedings of the Society for Experimental Biology and Medicine, 1999, 221, 80-86.	2.0	53
26	Role of Glycosylation in the Functional Expression of anAspergillus nigerPhytase (phyA) inPichia pastoris. Archives of Biochemistry and Biophysics, 1999, 364, 83-90.	1.4	117
27	Different Sensitivity of RecombinantAspergillus nigerPhytase (r-PhyA) andEscherichia colipH 2.5 Acid Phosphatase (r-AppA) to Trypsin and Pepsinin Vitro. Archives of Biochemistry and Biophysics, 1999, 365, 262-267.	1.4	93
28	Cloning, Sequencing, and Expression of anEscherichia coliAcid Phosphatase/Phytase Gene (appA2) Isolated from Pig Colon. Biochemical and Biophysical Research Communications, 1999, 257, 117-123.	1.0	124
29	Expression of an Aspergillus niger Phytase Gene (phyA) in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 1999, 65, 1915-1918.	1.4	118
30	Knockout of cellular glutathione peroxidase affects seleniumâ€dependent parameters similarly in mice fed adequate and excessive dietary selenium. BioFactors, 1998, 7, 311-321.	2.6	39
31	Cellular Glutathione Peroxidase Is the Mediator of Body Selenium To Protect against Paraquat Lethality in Transgenic Mice. Journal of Nutrition, 1998, 128, 1070-1076.	1.3	177
32	Adding wheat middlings, microbial phytase, and citric acid to corn-soybean meal diets for growing pigs may replace inorganic phosphorus supplementation Journal of Animal Science, 1998, 76, 2649.	0.2	41
33	Dietary Selenium Supplementation Is Required to Support Full Expression of Three Selenium-Dependent Glutathione Peroxidases in Various Tissues of Weanling Pigs ,. Journal of Nutrition, 1998, 128, 130-135.	1.3	47
34	Comparison of Age-Related Differences in Expression of Phospholipid Hydroperoxide Glutathione Peroxidase mRNA and Activity in Various Tissues of Pigs. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1997, 117, 109-114.	0.7	14
35	Cellular Glutathione Peroxidase Knockout Mice Express Normal Levels of Selenium-Dependent Plasma and Phospholipid Hydroperoxide Glutathione Peroxidases in Various Tissues. Journal of Nutrition, 1997, 127, 1445-1450.	1.3	137
36	Supplemental phytases of microbial and cereal sources improve dietary phytate phosphorus utilization by pigs from weaning through finishing Journal of Animal Science, 1997, 75, 1017.	0.2	73

X G Lei

#	Article	IF	CITATIONS
37	Overexpression of Cellular Glutathione Peroxidase Does Not Affect Expression of Plasma Glutathione Peroxidase or Phospholipid Hydroperoxide Glutathione Peroxidase in Mice Offered Diets Adequate or Deficient in Selenium. Journal of Nutrition, 1997, 127, 675-680.	1.3	75
38	Effects of dietary selenium and vitamin E concentrations on phospholipid hydroperoxide glutathione peroxidase expression in reproductive tissues of pubertal maturing male rats. Biological Trace Element Research, 1997, 59, 195-206.	1.9	14
39	Glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are differentially regulated in rats by dietary selenium. Journal of Nutrition, 1995, 125, 1438-46.	1.3	251
40	Calcium level affects the efficacy of supplemental microbial phytase in corn-soybean meal diets of weanling pigs1. Journal of Animal Science, 1994, 72, 139-143.	0.2	126
41	Supplementing corn-soybean meal diets with microbial phytase linearly improves phytate phosphorus utilization by weanling pigs1. Journal of Animal Science, 1993, 71, 3359-3367.	0.2	151
42	Supplementing corn-soybean meal diets with microbial phytase maximizes phytate phosphorus utilization by weanling pigs1. Journal of Animal Science, 1993, 71, 3368-3375.	0.2	77