Laura Pw Ranum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11888795/publications.pdf

Version: 2024-02-01

38 papers 4,288 citations

201674 27 h-index 377865 34 g-index

40 all docs

40 docs citations

times ranked

40

3557 citing authors

#	Article	IF	CITATIONS
1	RAN proteins in neurodegenerative disease: Repeating themes and unifying therapeutic strategies. Current Opinion in Neurobiology, 2022, 72, 160-170.	4.2	10
2	Uninterrupted CAG repeat drives striatum-selective transcriptionopathy and nuclear pathogenesis in human Huntingtin BAC mice. Neuron, 2022, 110, 1173-1192.e7.	8.1	30
3	Molecular characterization of myotonic dystrophy fibroblast cell lines for use in small molecule screening. IScience, 2022, 25, 104198.	4.1	6
4	CCG•CGG interruptions in highâ€penetrance SCA8 families increase RAN translation and protein toxicity. EMBO Molecular Medicine, 2021, 13, e14095.	6.9	12
5	Antibody Therapy Targeting RAN Proteins Rescues C9 ALS/FTD Phenotypes in C9orf72 Mouse Model. Neuron, 2020, 105, 645-662.e11.	8.1	70
6	Repeat-Associated Non-ATG Translation: Molecular Mechanisms and Contribution to Neurological Disease. Annual Review of Neuroscience, 2019, 42, 227-247.	10.7	62
7	Repeat-associated non-ATG (RAN) translation. Journal of Biological Chemistry, 2018, 293, 16127-16141.	3.4	81
8	<scp>SCA</scp> 8 <scp>RAN</scp> polySer protein preferentially accumulates in white matter regions and is regulated by <scp>eIF</scp> 3F. EMBO Journal, 2018, 37, .	7.8	50
9	Repeat-Associated Non-ATG Translation in Neurological Diseases. Cold Spring Harbor Perspectives in Biology, 2018, 10, a033019.	5 . 5	33
10	New developments in RAN translation: insights from multiple diseases. Current Opinion in Genetics and Development, 2017, 44, 125-134.	3.3	81
11	Mutant Huntingtin Disrupts the Nuclear Pore Complex. Neuron, 2017, 94, 93-107.e6.	8.1	274
12	RAN Translation Regulated by Muscleblind Proteins in Myotonic Dystrophy Type 2. Neuron, 2017, 95, 1292-1305.e5.	8.1	116
13	Genome Modification Leads to Phenotype Reversal in Human Myotonic Dystrophy Type 1 Induced Pluripotent Stem Cell-Derived Neural Stem Cells. Stem Cells, 2015, 33, 1829-1838.	3.2	53
14	Hippocampal sclerosis dementia with the C9ORF72 hexanucleotide repeat expansion. Neurobiology of Aging, 2014, 35, 2419.e17-2419.e21.	3.1	21
15	Repeat associated non-ATG (RAN) translation: new starts in microsatellite expansion disorders. Current Opinion in Genetics and Development, 2014, 26, 6-15.	3.3	104
16	Repeat-associated non-ATG (RAN) translation in neurological disease. Human Molecular Genetics, 2013, 22, R45-R51.	2.9	136
17	Clinical and genetic features of spinocerebellar ataxia type 8. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 103, 493-505.	1.8	10
18	Spinocerebellar ataxia type 5. Handbook of Clinical Neurology / Edited By PJ Vinken and G W Bruyn, 2012, 103, 451-459.	1.8	31

#	Article	IF	CITATIONS
19	Chapter 6 Mechanisms Underlying Noncoding Repeat Expansions. Blue Books of Neurology, 2007, , 170-185.	0.1	O
20	DM2 intronic expansions: evidence for CCUG accumulation without flanking sequence or effects on ZNF9 mRNA processing or protein expression. Human Molecular Genetics, 2006, 15, 1808-1815.	2.9	99
21	RNA-MEDIATED NEUROMUSCULAR DISORDERS. Annual Review of Neuroscience, 2006, 29, 259-277.	10.7	442
22	Molecular Genetics of Spinocerebellar Ataxia Type 8., 2006, , 417-431.		1
23	Clinical and Genetic Features of Myotonic Dystrophy Type 2. , 2006, , 115-129.		1
24	RNA pathogenesis of the myotonic dystrophies. Neuromuscular Disorders, 2005, 15, 5-16.	0.6	166
25	Hairpin Structure-forming Propensity of the (CCTG·CAGG) Tetranucleotide Repeats Contributes to the Genetic Instability Associated with Myotonic Dystrophy Type 2. Journal of Biological Chemistry, 2004, 279, 41715-41726.	3.4	57
26	Pathogenic RNA repeats: an expanding role in genetic disease. Trends in Genetics, 2004, 20, 506-512.	6.7	101
27	Myotonic Dystrophy: RNA Pathogenesis Comes into Focus. American Journal of Human Genetics, 2004, 74, 793-804.	6.2	190
28	Spinocerebellar Ataxia Type 8: Molecular Genetic Comparisonsand Haplotype Analysis of 37 Families with Ataxia. American Journal of Human Genetics, 2004, 75, 3-16.	6.2	88
29	Myotonic Dystrophy Type 2: Human Founder Haplotype and Evolutionary Conservation of the Repeat Tract. American Journal of Human Genetics, 2003, 73, 849-862.	6.2	92
30	Spinocerebellar Ataxia 5 (SCA5)., 2003,, 75-80.		0
31	Dominantly inherited, non-coding microsatellite expansion disorders. Current Opinion in Genetics and Development, 2002, 12, 266-271.	3.3	127
32	Reply—. Nature Genetics, 2000, 24, 215-215.	21.4	10
33	CAG repeat length in RAI1 is associated with age at onset variability in spinocerebellar ataxia type 2 (SCA2). Human Molecular Genetics, 2000, 9, 1753-1758.	2.9	76
34	An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nature Genetics, 1999, 21, 379-384.	21.4	615
35	Clinical and genetic characteristics of a five-generation family with a novel form of myotonic dystrophy (DM2). Neuromuscular Disorders, 1999, 9, 19-27.	0.6	110
36	Rapid cloning of expanded trinucleotide repeat sequences from genomic DNA. Nature Genetics, 1998, 18, 72-75.	21.4	109

#		Article	IF	CITATIONS
37	7	Spinocerebellar ataxia type 5 in a family descended from the grandparents of President Lincoln maps to chromosome 11. Nature Genetics, 1994, 8, 280-284.	21.4	334
38	8	Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type I. Nature Genetics, 1993, 5, 254-258.	21.4	489