List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1188863/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal dichalcogenide nanosheets: preparation, properties and applications. Chemical Society Reviews, 2013, 42, 1934.	18.7	1,809
2	Single‣ayer Semiconducting Nanosheets: High‥ield Preparation and Device Fabrication. Angewandte Chemie - International Edition, 2011, 50, 11093-11097.	7.2	1,517
3	Synthesis of Fewâ€Layer MoS ₂ Nanosheetâ€Coated TiO ₂ Nanobelt Heterostructures for Enhanced Photocatalytic Activities. Small, 2013, 9, 140-147.	5.2	1,166
4	Single-Layer MoS ₂ -Based Nanoprobes for Homogeneous Detection of Biomolecules. Journal of the American Chemical Society, 2013, 135, 5998-6001.	6.6	995
5	Grapheneâ€Based Electrodes. Advanced Materials, 2012, 24, 5979-6004.	11.1	829
6	Fabrication of Flexible MoS ₂ Thinâ€Film Transistor Arrays for Practical Gas‧ensing Applications. Small, 2012, 8, 2994-2999.	5.2	817
7	Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nature Communications, 2013, 4, 1444.	5.8	756
8	Three-Dimensional Graphene Foam Supported Fe ₃ O ₄ Lithium Battery Anodes with Long Cycle Life and High Rate Capability. Nano Letters, 2013, 13, 6136-6143.	4.5	738
9	One-step synthesis of Ni ₃ S ₂ nanorod@Ni(OH) ₂ nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors. Energy and Environmental Science, 2013, 6, 2216-2221.	15.6	554
10	An Effective Method for the Fabrication of Few‣ayerâ€Thick Inorganic Nanosheets. Angewandte Chemie - International Edition, 2012, 51, 9052-9056.	7.2	520
11	Synthesis of Free tanding Metal Sulfide Nanoarrays via Anion Exchange Reaction and Their Electrochemical Energy Storage Application. Small, 2014, 10, 766-773.	5.2	413
12	Preparation of MoS ₂ â€Polyvinylpyrrolidone Nanocomposites for Flexible Nonvolatile Rewritable Memory Devices with Reduced Graphene Oxide Electrodes. Small, 2012, 8, 3517-3522.	5.2	393
13	Electrochemically Reduced Single‣ayer MoS ₂ Nanosheets: Characterization, Properties, and Sensing Applications. Small, 2012, 8, 2264-2270.	5.2	373
14	A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals. Nature Communications, 2012, 3, 1177.	5.8	368
15	Growth of noble metal nanoparticles on single-layer TiS ₂ and TaS ₂ nanosheets for hydrogen evolution reaction. Energy and Environmental Science, 2014, 7, 797-803.	15.6	323
16	Strategies of regulating Zn ²⁺ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy and Environmental Science, 2022, 15, 499-528.	15.6	313
17	Visualization of Electrode–Electrolyte Interfaces in LiPF ₆ /EC/DEC Electrolyte for Lithium Ion Batteries via in Situ TEM. Nano Letters, 2014, 14, 1745-1750.	4.5	304
18	MnO ₂ â€Based Materials for Environmental Applications. Advanced Materials, 2021, 33, e2004862.	11.1	252

#	Article	IF	CITATIONS
19	A Solutionâ€Processed Hole Extraction Layer Made from Ultrathin MoS ₂ Nanosheets for Efficient Organic Solar Cells. Advanced Energy Materials, 2013, 3, 1262-1268.	10.2	231
20	Surfaceâ€Confined Fabrication of Ultrathin Nickel Cobalt‣ayered Double Hydroxide Nanosheets for Highâ€Performance Supercapacitors. Advanced Functional Materials, 2018, 28, 1803272.	7.8	215
21	Cobalt Oxide Nanowall Arrays on Reduced Graphene Oxide Sheets with Controlled Phase, Grain Size, and Porosity for Li-Ion Battery Electrodes. Journal of Physical Chemistry C, 2011, 115, 8400-8406.	1.5	196
22	Surface modification-induced phase transformation of hexagonal close-packed gold square sheets. Nature Communications, 2015, 6, 6571.	5.8	195
23	Hollow core–shell nanostructure supercapacitor electrodes: gap matters. Energy and Environmental Science, 2012, 5, 9085.	15.6	184
24	Fabrication of Graphene Nanomesh by Using an Anodic Aluminum Oxide Membrane as a Template. Advanced Materials, 2012, 24, 4138-4142.	11.1	183
25	A facile, relative green, and inexpensive synthetic approach toward large-scale production of SnS2 nanoplates for high-performance lithium-ion batteries. Nanoscale, 2013, 5, 1456.	2.8	177
26	Formation of two-dimensional transition metal oxide nanosheets with nanoparticles as intermediates. Nature Materials, 2019, 18, 970-976.	13.3	169
27	Formation of monometallic Au and Pd and bimetallic Au–Pd nanoparticles confined in mesopores via Ar glow-discharge plasma reduction and their catalytic applications in aerobic oxidation of benzyl alcohol. Journal of Catalysis, 2012, 289, 105-117.	3.1	155
28	Intercalation and exfoliation chemistries of transition metal dichalcogenides. Journal of Materials Chemistry A, 2020, 8, 15417-15444.	5.2	154
29	ZnIn ₂ S ₄ â€Based Photocatalysts for Energy and Environmental Applications. Small Methods, 2021, 5, e2100887.	4.6	153
30	Metallic 1T Phase Enabling MoS ₂ Nanodots as an Efficient Agent for Photoacoustic Imaging Guided Photothermal Therapy in the Nearâ€Infraredâ€II Window. Small, 2020, 16, e2004173.	5.2	150
31	Memory Devices Using a Mixture of MoS ₂ and Graphene Oxide as the Active Layer. Small, 2013, 9, 727-731.	5.2	144
32	In Situ Study of Lithiation and Delithiation of MoS ₂ Nanosheets Using Electrochemical Liquid Cell Transmission Electron Microscopy. Nano Letters, 2015, 15, 5214-5220.	4.5	135
33	Preparation of MoS ₂ –MoO ₃ Hybrid Nanomaterials for Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2014, 53, 12560-12565.	7.2	133
34	Forest of Gold Nanowires: A New Type of Nanocrystal Growth. ACS Nano, 2013, 7, 2733-2740.	7.3	126
35	Preparation of Singleâ€Layer MoS ₂ <i>_x</i> Se _{2(1â€} <i>_x</i> _x) and Mo <i>_x</i> W _{1â€} <i>_x</i> S ₂ Nanosheets with Highâ€Concentration Metallic 1T Phase. Small. 2016. 12–1866-1874	5.2	126
36	Investigation of MoS ₂ and Graphene Nanosheets by Magnetic Force Microscopy. ACS Nano, 2013, 7, 2842-2849.	7.3	117

#	Article	IF	CITATIONS
37	Electrochemical performance of ZnO nanoplates as anode materials for Ni/Zn secondary batteries. Journal of Power Sources, 2008, 179, 395-400.	4.0	112
38	A Safe Flexible Self-Powered Wristband System by Integrating Defective MnO _{2–<i>x</i>} Nanosheet-Based Zinc-Ion Batteries with Perovskite Solar Cells. ACS Nano, 2021, 15, 10597-10608.	7.3	109
39	Threeâ€Dimensional Graphene Network Composites for Detection of Hydrogen Peroxide. Small, 2013, 9, 1703-1707.	5.2	107
40	High-yield production of mono- or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method. Nature Protocols, 2022, 17, 358-377.	5.5	100
41	Electrochemical investigation on nanoflower-like CuO/Ni composite film as anode for lithium ion batteries. Electrochimica Acta, 2009, 54, 1160-1165.	2.6	98
42	Liquidâ€Phase Epitaxial Growth of Twoâ€Dimensional Semiconductor Heteroâ€nanostructures. Angewandte Chemie - International Edition, 2015, 54, 1841-1845.	7.2	88
43	Integrated photoelectrochemical energy storage: solar hydrogen generation and supercapacitor. Scientific Reports, 2012, 2, 981.	1.6	85
44	Stabilizing zinc anode via a chelation and desolvation electrolyte additive. , 2022, 1, 100007.		83
45	Fabrication of metal oxide nanobranches on atomic-layer-deposited TiO2 nanotube arrays and their application in energy storage. Nanoscale, 2013, 5, 6040.	2.8	79
46	Graphene Oxide as a Carbon Source for Controlled Growth of Carbon Nanowires. Small, 2011, 7, 1199-1202.	5.2	75
47	Nickel Foam-Supported Porous NiOâ^•Ag Film Electrode for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2008, 155, A438.	1.3	70
48	Highly efficient photocatalytic hydrogen evolution and simultaneous formaldehyde degradation over Z-scheme ZnIn2S4-NiO/BiVO4 hierarchical heterojunction under visible light irradiation. Chemical Engineering Journal, 2021, 423, 130164.	6.6	70
49	A Novel Graphene-Polysulfide Anode Material for High-Performance Lithium-Ion Batteries. Scientific Reports, 2013, 3, 2341.	1.6	68
50	Flexible electronics based on 2D transition metal dichalcogenides. Journal of Materials Chemistry A, 2021, 10, 89-121.	5.2	66
51	In situ TEM study of the Li–Au reaction in an electrochemical liquid cell. Faraday Discussions, 2014, 176, 95-107.	1.6	60
52	Atomicâ€Layerâ€Depositionâ€Assisted Formation of Carbon Nanoflakes on Metal Oxides and Energy Storage Application. Small, 2014, 10, 300-307.	5.2	60
53	In situ TEM visualization of LiF nanosheet formation on the cathode-electrolyte interphase (CEI) in liquid-electrolyte lithium-ion batteries. Matter, 2022, 5, 1235-1250.	5.0	56
54	Electrochemical performances of nanostructured Ni3P–Ni films electrodeposited on nickel foam substrate. Journal of Power Sources, 2008, 185, 519-525.	4.0	55

ZHIYUAN ZENG

#	Article	IF	CITATIONS
55	Electrode roughness dependent electrodeposition of sodium at the nanoscale. Nano Energy, 2020, 72, 104721.	8.2	54
56	Size-selective synthesis of platinum nanoparticles on transition-metal dichalcogenides for the hydrogen evolution reaction. Chemical Communications, 2021, 57, 2879-2882.	2.2	51
57	Investigation into the Phase–Activity Relationship of MnO ₂ Nanomaterials toward Ozoneâ€Assisted Catalytic Oxidation of Toluene. Small, 2021, 17, e2103052.	5.2	51
58	Controlling Reversible Elastic Deformation of Carbon Nanotube Rings. Journal of the American Chemical Society, 2011, 133, 9654-9657.	6.6	49
59	Recent Developments of Two-Dimensional Anode Materials and Their Composites in Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 7440-7461.	2.5	48
60	Recent advances in wearable self-powered energy systems based on flexible energy storage devices integrated with flexible solar cells. Journal of Materials Chemistry A, 2021, 9, 18887-18905.	5.2	47
61	Electrochemical deposition of Pt nanoparticles on carbon nanotube patterns for glucose detection. Analyst, The, 2010, 135, 1726.	1.7	46
62	Self‧acrifice Template Construction of Uniform Yolk–Shell ZnS@C for Superior Alkaliâ€lon Storage. Advanced Science, 2022, 9, e2200247.	5.6	46
63	Printable Ink Design towards Customizable Miniaturized Energy Storage Devices. , 2020, 2, 1041-1056.		45
64	Simultaneous Electrochemical Exfoliation and Covalent Functionalization of MoS ₂ Membrane for Ion Sieving. Advanced Materials, 2022, 34, e2201416.	11.1	45
65	InVO4-based photocatalysts for energy and environmental applications. Chemical Engineering Journal, 2022, 428, 131145.	6.6	44
66	Crystallization of Mordenite Platelets using Cooperative Organic Structure-Directing Agents. Journal of the American Chemical Society, 2019, 141, 20155-20165.	6.6	42
67	Nanostructured Si/TiC composite anode for Li-ion batteries. Electrochimica Acta, 2008, 53, 2724-2728.	2.6	41
68	Visualization of Colloidal Nanocrystal Formation and Electrode–Electrolyte Interfaces in Liquids Using TEM. Accounts of Chemical Research, 2017, 50, 1808-1817.	7.6	40
69	Laser-induced graphene for environmental applications: progress and opportunities. Materials Chemistry Frontiers, 2021, 5, 4874-4891.	3.2	35
70	Periodic nanostructures: preparation, properties and applications. Chemical Society Reviews, 2021, 50, 6423-6482.	18.7	34
71	Hierarchical protonated titanate nanostructures for lithium-ion batteries. Nanoscale, 2011, 3, 4074.	2.8	33
72	Nitrogen-induced interfacial electronic structure of NiS ₂ /CoS ₂ with optimized water and hydrogen binding abilities for efficient alkaline hydrogen evolution electrocatalysis. Journal of Materials Chemistry A, 2022, 10, 719-725.	5.2	33

ZHIYUAN ZENG

#	Article	IF	CITATIONS
73	Design of 3d transition metal anchored B ₅ N ₃ catalysts for electrochemical CO ₂ reduction to methane. Journal of Materials Chemistry A, 2022, 10, 9737-9745.	5.2	31
74	Emerging elemental two-dimensional materials for energy applications. Journal of Materials Chemistry A, 2021, 9, 18793-18817.	5.2	30
75	Mn dopant induced high-valence Ni ³⁺ sites and oxygen vacancies for enhanced water oxidation. Materials Chemistry Frontiers, 2020, 4, 1993-1999.	3.2	28
76	Advanced Electron Energy Loss Spectroscopy for Battery Studies. Advanced Functional Materials, 2022, 32, 2107190.	7.8	26
77	Induced Coiling Action: Exploring the Intrinsic Defects in Five-Fold Twinned Silver Nanowires. ACS Nano, 2012, 6, 6033-6039.	7.3	25
78	Electrochemical properties of Si/LiTi2O4 nanocomposite as anode materials for Li-ion secondary batteries. Journal of Electroanalytical Chemistry, 2008, 616, 7-13.	1.9	22
79	Transient Solidâ€State Laser Activation of Indium for Highâ€Performance Reduction of CO ₂ to Formate. Small, 2022, 18, e2201311.	5.2	22
80	Boosting Zn ²⁺ Diffusion via Tunnel-Type Hydrogen Vanadium Bronze for High-Performance Zinc Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 7909-7916.	4.0	21
81	Electrochemical Properties of a Mesoporous Siâ^•TiO[sub 2] Nanocomposite Film Anode for Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2008, 11, A105.	2.2	20
82	A long-standing polarized electric field in TiO2@BaTiO3/CdS nanocomposite for effective photocatalytic hydrogen evolution. Fuel, 2022, 314, 122758.	3.4	20
83	Exploration of Energy Storage Materials for Water Desalination via Next-Generation Capacitive Deionization. Frontiers in Chemistry, 2020, 8, 415.	1.8	19
84	Direct Detection and Visualization of the H ⁺ Reaction Process in a VO ₂ Cathode for Aqueous Zinc-Ion Batteries. Journal of Physical Chemistry Letters, 2021, 12, 7076-7084.	2.1	19
85	Stretchable transparent conductive elastomers for skin-integrated electronics. Journal of Materials Chemistry C, 2020, 8, 15105-15111.	2.7	18
86	Electrochemical investigation on silicon/titanium carbide nanocomposite film anode for Li-ion batteries. Thin Solid Films, 2009, 517, 4767-4771.	0.8	17
87	TaS2 nanosheet-based room-temperature dosage meter for nitric oxide. APL Materials, 2014, 2, .	2.2	16
88	Gold-based nanoalloys: synthetic methods and catalytic applications. Journal of Materials Chemistry A, 2021, 9, 19025-19053.	5.2	16
89	Modification Strategies of Layered Double Hydroxides for Superior Supercapacitors. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	16
90	Electrochemical biosensing platforms on the basis of reduced graphene oxide and its composites with Au nanodots. Analyst, The, 2020, 145, 3749-3756.	1.7	8

#	Article	IF	CITATIONS
91	High‥ield Exfoliation of Ultrathin 2D Ni ₃ Cr ₂ P ₂ S ₉ and Ni ₃ Cr ₂ P ₂ Se ₉ Nanosheets. Small, 2021, 17, e2006866.	5.2	8
92	Selfâ€Assembly of 2D Nanosheets into 1D Nanostructures for Sensing NO 2. Small Structures, 2021, 2, 2100067.	6.9	8
93	Unveiling the Dynamic Oxidative Etching Mechanisms of Nanostructured Metals/Metallic Oxides in Liquid Media Through In Situ Transmission Electron Microscopy. Advanced Functional Materials, 2022, 32, .	7.8	7
94	Rational design of fly ash-based composites for sustainable lithium-ion battery anodes. Electrochimica Acta, 2022, 410, 140035.	2.6	6
95	Investigation into the Phase–Activity Relationship of MnO ₂ Nanomaterials toward Ozoneâ€Assisted Catalytic Oxidation of Toluene (Small 50/2021). Small, 2021, 17, .	5.2	1
96	Visualization of Electrochemical Reaction Dynamics in Liquids Using TEM. Microscopy and Microanalysis, 2017, 23, 884-885.	0.2	0
97	Liquid Cell TEM Study of Nucleation and Growth of Dendrites. Microscopy and Microanalysis, 2018, 24, 250-251.	0.2	0
98	Controlled Synthesis of Hollow Hemispheric ZnO Shells/Cages on Graphite Fiber. ISRN Nanotechnology, 2011, 2011, 1-5.	1.3	0