Harry J Flint

List of Publications by Citations

Source: https://exaly.com/author-pdf/11888326/harry-j-flint-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

86 185 34,536 217 h-index g-index citations papers 7.48 225 42,334 5.4 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
217	Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. <i>Nature Reviews Gastroenterology and Hepatology</i> , 2014 , 11, 506-14	24.2	3614
216	The gut microbiota, bacterial metabolites and colorectal cancer. <i>Nature Reviews Microbiology</i> , 2014 , 12, 661-72	22.2	1390
215	The role of the gut microbiota in nutrition and health. <i>Nature Reviews Gastroenterology and Hepatology</i> , 2012 , 9, 577-89	24.2	1119
214	Microbial degradation of complex carbohydrates in the gut. <i>Gut Microbes</i> , 2012 , 3, 289-306	8.8	1085
213	Dominant and diet-responsive groups of bacteria within the human colonic microbiota. <i>ISME Journal</i> , 2011 , 5, 220-30	11.9	1081
212	Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. <i>FEMS Microbiology Letters</i> , 2009 , 294, 1-8	2.9	1078
211	Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. <i>Nature Reviews Microbiology</i> , 2008 , 6, 121-31	22.2	1070
210	The microbiology of butyrate formation in the human colon. FEMS Microbiology Letters, 2002, 217, 133-	-9 2.9	911
209	Formation of propionate and butyrate by the human colonic microbiota. <i>Environmental Microbiology</i> , 2017 , 19, 29-41	5.2	831
208	Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 5810-7	4.8	673
207	Phylogenetic relationships of butyrate-producing bacteria from the human gut. <i>Applied and Environmental Microbiology</i> , 2000 , 66, 1654-61	4.8	653
206	Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 1073-8	4.8	624
205	Intestinal microbiota in functional bowel disorders: a Rome foundation report. <i>Gut</i> , 2013 , 62, 159-76	19.2	607
204	The influence of diet on the gut microbiota. <i>Pharmacological Research</i> , 2013 , 69, 52-60	10.2	594
203	Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. <i>ISME Journal</i> , 2014 , 8, 1323-35	11.9	561
202	Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. <i>ISME Journal</i> , 2012 , 6, 1535-43	11.9	551
201	Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 3593-9	4.8	541

(2013-2005)

200	pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 3692-700	4.8	485	
199	High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. <i>American Journal of Clinical Nutrition</i> , 2011 , 93, 1062-72	7	456	
198	Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. <i>Environmental Microbiology</i> , 2010 , 12, 304-14	5.2	445	
197	Interactions and competition within the microbial community of the human colon: links between diet and health. <i>Environmental Microbiology</i> , 2007 , 9, 1101-11	5.2	430	
196	The role of pH in determining the species composition of the human colonic microbiota. <i>Environmental Microbiology</i> , 2009 , 11, 2112-22	5.2	416	
195	Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. <i>Applied and Environmental Microbiology</i> , 2002 , 68, 5186-90	4.8	407	
194	Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. <i>PLoS Pathogens</i> , 2012 , 8, e1002995	7.6	403	
193	Challenges in microbial ecology: building predictive understanding of community function and dynamics. <i>ISME Journal</i> , 2016 , 10, 2557-2568	11.9	380	
192	Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. <i>ISME Journal</i> , 2014 , 8, 2218-30	11.9	356	
191	Towards standards for human fecal sample processing in metagenomic studies. <i>Nature Biotechnology</i> , 2017 , 35, 1069-1076	44.5	355	
190	Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2002 , 52, 2141-2146	2.2	352	
189	Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. <i>Gut</i> , 2016 , 65, 63-72	19.2	307	
188	Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. <i>Journal of Bacteriology</i> , 2004 , 186, 2099-106	3.5	295	
187	Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. <i>FEMS Microbiology Ecology</i> , 2002 , 39, 33-9	4.3	279	
186	Contribution of acetate to butyrate formation by human faecal bacteria. <i>British Journal of Nutrition</i> , 2004 , 91, 915-23	3.6	271	
185	Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro. <i>FEMS Microbiology Ecology</i> , 2014 , 87, 30-40	4.3	249	
184	Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth. <i>Applied and Environmental Microbiology</i> , 2012 , 78, 420-8	4.8	247	
183	Colonic bacterial metabolites and human health. <i>Current Opinion in Microbiology</i> , 2013 , 16, 246-54	7.9	243	

182	From cellulosomes to cellulosomics. <i>Chemical Record</i> , 2008 , 8, 364-77	6.6	237
181	Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human faeces. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2002 , 52, 1615-1620	2.2	237
180	Contribution of diet to the composition of the human gut microbiota. <i>Microbial Ecology in Health and Disease</i> , 2015 , 26, 26164		227
179	Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human feces. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 4320-4	4.8	226
178	Modulation of the human gut microbiota by dietary fibres occurs at the species level. <i>BMC Biology</i> , 2016 , 14, 3	7.3	214
177	The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases. <i>ISME Journal</i> , 2012 , 6, 1578-85	11.9	201
176	Microbiota of de-novo pediatric IBD: increased Faecalibacterium prausnitzii and reduced bacterial diversity in Crohn@but not in ulcerative colitis. <i>American Journal of Gastroenterology</i> , 2012 , 107, 1913-2	22 ^{0.7}	201
175	Selective colonization of insoluble substrates by human faecal bacteria. <i>Environmental Microbiology</i> , 2007 , 9, 667-79	5.2	197
174	The impact of different DNA extraction kits and laboratories upon the assessment of human gut microbiota composition by 16S rRNA gene sequencing. <i>PLoS ONE</i> , 2014 , 9, e88982	3.7	177
173	The impact of nutrition on the human microbiome. <i>Nutrition Reviews</i> , 2012 , 70 Suppl 1, S10-3	6.4	174
172	Major phenylpropanoid-derived metabolites in the human gut can arise from microbial fermentation of protein. <i>Molecular Nutrition and Food Research</i> , 2013 , 57, 523-35	5.9	172
171	Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and Bifidobacterium adolescentis. <i>FEMS Microbiology Letters</i> , 2015 , 362,	2.9	167
170	Whole-genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium "Roseburia inulinivorans". <i>Journal of Bacteriology</i> , 2006 , 188, 4340-9	3.5	161
169	16S rRNA gene-based profiling of the human infant gut microbiota is strongly influenced by sample processing and PCR primer choice. <i>Microbiome</i> , 2015 , 3, 26	16.6	153
168	Phylogeny, culturing, and metagenomics of the human gut microbiota. <i>Trends in Microbiology</i> , 2014 , 22, 267-74	12.4	148
167	Bacterial diversity within the equine large intestine as revealed by molecular analysis of cloned 16S rRNA genes. <i>FEMS Microbiology Ecology</i> , 2001 , 38, 141-151	4.3	145
166	Proposal of Roseburia faecis sp. nov., Roseburia hominis sp. nov. and Roseburia inulinivorans sp. nov., based on isolates from human faeces. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2006 , 56, 2437-2441	2.2	142
165	Effects of alternative dietary substrates on competition between human colonic bacteria in an anaerobic fermentor system. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 1136-42	4.8	141

(2013-2007)

164	Development of a semiquantitative degenerate real-time pcr-based assay for estimation of numbers of butyryl-coenzyme A (CoA) CoA transferase genes in complex bacterial samples. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 2009-12	4.8	140
163	Cellulosomal scaffoldin-like proteins from Ruminococcus flavefaciens. <i>Journal of Bacteriology</i> , 2001 , 183, 1945-53	3.5	137
162	Impact of pH on lactate formation and utilization by human fecal microbial communities. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 6526-33	4.8	136
161	Probiotics and prebiotics and health in ageing populations. <i>Maturitas</i> , 2013 , 75, 44-50	5	132
160	Plant cell wall breakdown by anaerobic microorganisms from the Mammalian digestive tract. <i>Annals of the New York Academy of Sciences</i> , 2008 , 1125, 280-8	6.5	131
159	Molecular analysis of the microbial diversity present in the colonic wall, colonic lumen, and cecal lumen of a pig. <i>Applied and Environmental Microbiology</i> , 1999 , 65, 5372-7	4.8	129
158	Gut microbiota signatures predict host and microbiota responses to dietary interventions in obese individuals. <i>PLoS ONE</i> , 2014 , 9, e90702	3.7	127
157	Faecalibacterium prausnitzii A2-165 has a high capacity to induce IL-10 in human and murine dendritic cells and modulates T cell responses. <i>Scientific Reports</i> , 2016 , 6, 18507	4.9	119
156	Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon. <i>FEMS Microbiology Ecology</i> , 2017 , 93,	4.3	117
155	The species composition of the human intestinal microbiota differs between particle-associated and liquid phase communities. <i>Environmental Microbiology</i> , 2008 , 10, 3275-83	5.2	109
154	Alterations in microbiota and fermentation products in equine large intestine in response to dietary variation and intestinal disease. <i>British Journal of Nutrition</i> , 2012 , 107, 989-95	3.6	108
153	Biomass utilization by gut microbiomes. Annual Review of Microbiology, 2014, 68, 279-96	17.5	107
152	Occurrence of the new tetracycline resistance gene tet(W) in bacteria from the human gut. <i>Antimicrobial Agents and Chemotherapy</i> , 2000 , 44, 775-7	5.9	107
151	Anaerostipes caccae gen. nov., sp. nov., a new saccharolytic, acetate-utilising, butyrate-producing bacterium from human faeces. <i>Systematic and Applied Microbiology</i> , 2002 , 25, 46-51	4.2	101
150	Oral treatment with improves insulin sensitivity in mice. <i>Npj Biofilms and Microbiomes</i> , 2016 , 2, 16009	8.2	101
149	Obesity and the gut microbiota. <i>Journal of Clinical Gastroenterology</i> , 2011 , 45 Suppl, S128-32	3	100
148	Unique Organization of Extracellular Amylases into Amylosomes in the Resistant Starch-Utilizing Human Colonic Firmicutes Bacterium Ruminococcus bromii. <i>MBio</i> , 2015 , 6, e01058-15	7.8	99
147	Some are more equal than others: the role of "keystone" species in the degradation of recalcitrant substrates. <i>Gut Microbes</i> , 2013 , 4, 236-40	8.8	98

146	Polysaccharide utilization loci and nutritional specialization in a dominant group of butyrate-producing human colonic. <i>Microbial Genomics</i> , 2016 , 2, e000043	4.4	98
145	Specific substrate-driven changes in human faecal microbiota composition contrast with functional redundancy in short-chain fatty acid production. <i>ISME Journal</i> , 2018 , 12, 610-622	11.9	98
144	The rumen microbial ecosystemsome recent developments. <i>Trends in Microbiology</i> , 1997 , 5, 483-8	12.4	97
143	Diversity and strain specificity of plant cell wall degrading enzymes revealed by the draft genome of Ruminococcus flavefaciens FD-1. <i>PLoS ONE</i> , 2009 , 4, e6650	3.7	97
142	Molecular diversity, cultivation, and improved detection by fluorescent in situ hybridization of a dominant group of human gut bacteria related to Roseburia spp. or Eubacterium rectale. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 6371-6	4.8	96
141	Lactate has the potential to promote hydrogen sulphide formation in the human colon. <i>FEMS Microbiology Letters</i> , 2009 , 299, 128-34	2.9	90
140	Estimation of the relative abundance of different Bacteroides and Prevotella ribotypes in gut samples by restriction enzyme profiling of PCR-amplified 16S rRNA gene sequences. <i>Applied and Environmental Microbiology</i> , 1998 , 64, 3683-9	4.8	90
139	Kinetic modelling of lactate utilization and butyrate production by key human colonic bacterial species. <i>FEMS Microbiology Ecology</i> , 2011 , 76, 615-24	4.3	87
138	Substrate-driven gene expression in Roseburia inulinivorans: importance of inducible enzymes in the utilization of inulin and starch. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108 Suppl 1, 4672-9	11.5	87
137	Evidence for recent intergeneric transfer of a new tetracycline resistance gene, tet(W), isolated from Butyrivibrio fibrisolvens, and the occurrence of tet(O) in ruminal bacteria. <i>Environmental Microbiology</i> , 1999 , 1, 53-64	5.2	87
136	Modelling the emergent dynamics and major metabolites of the human colonic microbiota. <i>Environmental Microbiology</i> , 2015 , 17, 1615-30	5.2	86
135	Lytic and lysogenic infection of diverse Escherichia coli and Shigella strains with a verocytotoxigenic bacteriophage. <i>Applied and Environmental Microbiology</i> , 2001 , 67, 4335-7	4.8	86
134	Wheat bran promotes enrichment within the human colonic microbiota of butyrate-producing bacteria that release ferulic acid. <i>Environmental Microbiology</i> , 2016 , 18, 2214-25	5.2	86
133	Functional genomics reveals that Clostridium difficile Spo0A coordinates sporulation, virulence and metabolism. <i>BMC Genomics</i> , 2014 , 15, 160	4.5	85
132	Comparative analysis of sequences flanking tet(W) resistance genes in multiple species of gut bacteria. <i>Antimicrobial Agents and Chemotherapy</i> , 2006 , 50, 2632-9	5.9	84
131	Unravelling the genetic diversity of ruminal bacteria belonging to the CFB phylum. <i>FEMS Microbiology Ecology</i> , 2000 , 33, 69-79	4.3	84
130	Mucosa-associated Faecalibacterium prausnitzii and Escherichia coli co-abundance can distinguish Irritable Bowel Syndrome and Inflammatory Bowel Disease phenotypes. <i>International Journal of Medical Microbiology</i> , 2014 , 304, 464-75	3.7	83
129	Phage-bacteria relationships and CRISPR elements revealed by a metagenomic survey of the rumen microbiome. <i>Environmental Microbiology</i> , 2012 , 14, 207-27	5.2	82

128	A bifunctional xylanase encoded by the xynA gene of the rumen cellulolytic bacterium Ruminococcus flavefaciens 17 comprises two dissimilar domains linked by an asparagine/glutamine-rich sequence. <i>Molecular Microbiology</i> , 1992 , 6, 1013-23	4.1	81	
127	Fate of free DNA and transformation of the oral bacterium Streptococcus gordonii DL1 by plasmid DNA in human saliva. <i>Applied and Environmental Microbiology</i> , 1999 , 65, 6-10	4.8	79	
126	The impact of nutrition on intestinal bacterial communities. <i>Current Opinion in Microbiology</i> , 2017 , 38, 59-65	7.9	78	
125	Unconventional mode of attachment of the Ruminococcus flavefaciens cellulosome to the cell surface. <i>Journal of Bacteriology</i> , 2005 , 187, 7569-78	3.5	75	
124	Inhibitory activity of gut bacteria against Escherichia coli O157 mediated by dietary plant metabolites. <i>FEMS Microbiology Letters</i> , 1998 , 164, 283-8	2.9	74	
123	Faecalibacterium prausnitzii Strain HTF-F and Its Extracellular Polymeric Matrix Attenuate Clinical Parameters in DSS-Induced Colitis. <i>PLoS ONE</i> , 2015 , 10, e0123013	3.7	74	
122	Changes in the Abundance of Faecalibacterium prausnitzii Phylogroups I and II in the Intestinal Mucosa of Inflammatory Bowel Disease and Patients with Colorectal Cancer. <i>Inflammatory Bowel Diseases</i> , 2016 , 22, 28-41	4.5	73	
121	Mechanistic Insights Into the Cross-Feeding of and on Host and Dietary Carbohydrates. <i>Frontiers in Microbiology</i> , 2018 , 9, 2558	5.7	71	
120	Phylogenetic distribution of genes encoding Eglucuronidase activity in human colonic bacteria and the impact of diet on faecal glycosidase activities. <i>Environmental Microbiology</i> , 2012 , 14, 1876-87	5.2	68	
119	Novel organization and divergent dockerin specificities in the cellulosome system of Ruminococcus flavefaciens. <i>Journal of Bacteriology</i> , 2003 , 185, 703-13	3.5	68	
118	Ruminococcal cellulosome systems from rumen to human. <i>Environmental Microbiology</i> , 2015 , 17, 3407-2	26 .2	67	
117	Three multidomain esterases from the cellulolytic rumen anaerobe Ruminococcus flavefaciens 17 that carry divergent dockerin sequences. <i>Microbiology (United Kingdom)</i> , 2000 , 146 (Pt 6), 1391-1397	2.9	67	
116	Mucosa-associated Faecalibacterium prausnitzii phylotype richness is reduced in patients with inflammatory bowel disease. <i>Applied and Environmental Microbiology</i> , 2015 , 81, 7582-92	4.8	66	
115	Cell-associated alpha-amylases of butyrate-producing Firmicute bacteria from the human colon. <i>Microbiology (United Kingdom)</i> , 2006 , 152, 3281-3290	2.9	65	
114	Novel tetracycline resistance gene, tet(32), in the Clostridium-related human colonic anaerobe K10 and its transmission in vitro to the rumen anaerobe Butyrivibrio fibrisolvens. <i>Antimicrobial Agents and Chemotherapy</i> , 2001 , 45, 3246-9	5.9	62	
113	A novel class of CoA-transferase involved in short-chain fatty acid metabolism in butyrate-producing human colonic bacteria. <i>Microbiology (United Kingdom)</i> , 2006 , 152, 179-185	2.9	60	
112	Abundance and diversity of dockerin-containing proteins in the fiber-degrading rumen bacterium, Ruminococcus flavefaciens FD-1. <i>PLoS ONE</i> , 2010 , 5, e12476	3.7	56	
111	Rumen cellulosomics: divergent fiber-degrading strategies revealed by comparative genome-wide analysis of six ruminococcal strains. <i>PLoS ONE</i> , 2014 , 9, e99221	3.7	55	

110	Anaerostipes hadrus comb. nov., a dominant species within the human colonic microbiota; reclassification of Eubacterium hadrum Moore et lal. 1976. <i>Anaerobe</i> , 2012 , 18, 523-9	2.8	54
109	Rates of production and utilization of lactate by microbial communities from the human colon. <i>FEMS Microbiology Ecology</i> , 2011 , 77, 107-19	4.3	53
108	Application of 16S rRNA gene-targetted fluorescence in situ hybridization and restriction fragment length polymorphism to study porcine microbiota along the gastrointestinal tract in response to different sources of dietary fibre. <i>FEMS Microbiology Ecology</i> , 2007 , 59, 138-46	4.3	51
107	Conservation and divergence in cellulosome architecture between two strains of Ruminococcus flavefaciens. <i>Journal of Bacteriology</i> , 2006 , 188, 7971-6	3.5	50
106	Bacteroides (Fibrobacter) succinogenes, a cellulolytic anaerobic bacterium from the gastrointestinal tract. <i>Applied Microbiology and Biotechnology</i> , 1989 , 30, 433	5.7	49
105	Lack of flagella disadvantages Salmonella enterica serovar Enteritidis during the early stages of infection in the rat. <i>Journal of Medical Microbiology</i> , 2003 , 52, 91-99	3.2	48
104	Dockerin-like sequences in cellulases and xylanases from the rumen cellulolytic bacterium Ruminococcus flavefaciens. <i>FEMS Microbiology Letters</i> , 1997 , 149, 213-9	2.9	47
103	ScaC, an adaptor protein carrying a novel cohesin that expands the dockerin-binding repertoire of the Ruminococcus flavefaciens 17 cellulosome. <i>Journal of Bacteriology</i> , 2004 , 186, 2576-85	3.5	47
102	Transformation of an oral bacterium via chromosomal integration of free DNA in the presence of human saliva. <i>FEMS Microbiology Letters</i> , 2001 , 200, 163-7	2.9	47
101	Sporulation capability and amylosome conservation among diverse human colonic and rumen isolates of the keystone starch-degrader Ruminococcus bromii. <i>Environmental Microbiology</i> , 2018 , 20, 324-336	5.2	46
100	A xylanase produced by the rumen anaerobic protozoan Polyplastron multivesiculatum shows close sequence similarity to family 11 xylanases from gram-positive bacteria. <i>FEMS Microbiology Letters</i> , 1999 , 181, 145-52	2.9	45
99	How to Manipulate the Microbiota: Prebiotics. <i>Advances in Experimental Medicine and Biology</i> , 2016 , 902, 119-42	3.6	45
98	Proposal of a neotype strain (A1-86) for Eubacterium rectale. Request for an opinion. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2008 , 58, 1735-6	2.2	44
97	Enzymatic profiling of cellulosomal enzymes from the human gut bacterium, Ruminococcus champanellensis, reveals a fine-tuned system for cohesin-dockerin recognition. <i>Environmental Microbiology</i> , 2016 , 18, 542-56	5.2	43
96	Expression of two xylanase genes from the rumen cellulolytic bacterium Ruminococcus flavefaciens 17 cloned in pUC13. <i>Microbiology (United Kingdom)</i> , 1991 , 137, 123-9	2.9	42
95	Discovery of a novel lantibiotic nisin O from Blautia obeum A2-162, isolated from the human gastrointestinal tract. <i>Microbiology (United Kingdom)</i> , 2017 , 163, 1292-1305	2.9	41
94	Complete genome of a new Firmicutes species belonging to the dominant human colonic microbiota (Quminococcus bicirculansQreveals two chromosomes and a selective capacity to utilize plant glucans. <i>Environmental Microbiology</i> , 2014 , 16, 2879-90	5.2	40
93	A novel cell surface-anchored cellulose-binding protein encoded by the sca gene cluster of Ruminococcus flavefaciens. <i>Journal of Bacteriology</i> , 2007 , 189, 4774-83	3.5	40

(1995-2004)

92	Polysaccharide breakdown by anaerobic microorganisms inhabiting the Mammalian gut. <i>Advances in Applied Microbiology</i> , 2004 , 56, 89-120	4.9	40
91	Vitamin Biosynthesis by Human Gut Butyrate-Producing Bacteria and Cross-Feeding in Synthetic Microbial Communities. <i>MBio</i> , 2020 , 11,	7.8	4º
90	A new tetracycline efflux gene, tet(40), is located in tandem with tet(O/32/O) in a human gut firmicute bacterium and in metagenomic library clones. <i>Antimicrobial Agents and Chemotherapy</i> , 2008 , 52, 4001-9	5.9	39
89	Organization of butyrate synthetic genes in human colonic bacteria: phylogenetic conservation and horizontal gene transfer. <i>FEMS Microbiology Letters</i> , 2007 , 269, 240-7	2.9	39
88	Cellulosome gene cluster analysis for gauging the diversity of the ruminal cellulolytic bacterium Ruminococcus flavefaciens. <i>FEMS Microbiology Letters</i> , 2008 , 285, 188-94	2.9	39
87	Assessment of metabolic diversity within the intestinal microbiota from healthy humans using combined molecular and cultural approaches. <i>FEMS Microbiology Ecology</i> , 2008 , 66, 496-504	4.3	39
86	Characterization of XYN10B, a modular xylanase from the ruminal protozoan Polyplastron multivesiculatum, with a family 22 carbohydrate-binding module that binds to cellulose. <i>Biochemical Journal</i> , 2003 , 373, 495-503	3.8	39
85	Chromosomal integration of the green fluorescent protein gene in lactic acid bacteria and the survival of marked strains in human gut simulations. <i>FEMS Microbiology Letters</i> , 2000 , 182, 23-7	2.9	39
84	Mosaic tetracycline resistance genes are widespread in human and animal fecal samples. <i>Antimicrobial Agents and Chemotherapy</i> , 2007 , 51, 1115-8	5.9	38
83	EndB, a multidomain family 44 cellulase from Ruminococcus flavefaciens 17, binds to cellulose via a novel cellulose-binding module and to another R. flavefaciens protein via a dockerin domain. <i>Applied and Environmental Microbiology</i> , 2001 , 67, 4426-31	4.8	38
82	Natural genetic transformation in the rumen bacterium Streptococcus bovis JB1. <i>FEMS Microbiology Letters</i> , 1999 , 179, 485-90	2.9	38
81	Electroporation induced transformation ofBacteroides ruminicolaandBacteroides uniformisby plasmid DNA. <i>FEMS Microbiology Letters</i> , 1989 , 61, 101-104	2.9	38
80	The green fluorescent protein as a visible marker for lactic acid bacteria in complex ecosystems. <i>FEMS Microbiology Ecology</i> , 1998 , 26, 219-230	4.3	35
79	Involvement of the multidomain regulatory protein XynR in positive control of xylanase gene expression in the ruminal anaerobe Prevotella bryantii B(1)4. <i>Journal of Bacteriology</i> , 2003 , 185, 2219-2	6 ^{3.5}	35
78	Heterologous expression of an endoglucanase gene (endA) from the ruminal anaerobe Ruminococcus flavefaciens 17 in Streptococcus bovis and Streptococcus sanguis. <i>FEMS Microbiology Letters</i> , 1995 , 126, 165-9	2.9	34
77	Hybrid tet genes and tet gene nomenclature: request for opinion. <i>Antimicrobial Agents and Chemotherapy</i> , 2005 , 49, 1265-6	5.9	33
76	The Butyrivibrio fibrisolvens tet(W) gene is carried on the novel conjugative transposon TnB1230, which contains duplicated nitroreductase coding sequences. <i>Journal of Bacteriology</i> , 2004 , 186, 3656-9	3.5	32
75	Isolation of genes encoding beta-D-xylanase, beta-D-xylosidase and alpha-L-arabinofuranosidase activities from the rumen bacterium Prevotella ruminicola B1(4). FEMS Microbiology Letters, 1995, 125, 135-41	2.9	31

74	Molecular genetics of obligate anaerobes from the rumen. FEMS Microbiology Letters, 1994, 121, 259-6	72.9	30
73	Pro-inflammatory flagellin proteins of prevalent motile commensal bacteria are variably abundant in the intestinal microbiome of elderly humans. <i>PLoS ONE</i> , 2013 , 8, e68919	3.7	30
72	Interrupted catalytic domain structures in xylanases from two distantly related strains of Prevotella ruminicola. <i>BBA - Proteins and Proteomics</i> , 1997 , 1337, 161-5		26
71	Identification of non-catalytic conserved regions in xylanases encoded by the xynB and xynD genes of the cellulolytic rumen anaerobe Ruminococcus flavefaciens. <i>Molecular Genetics and Genomics</i> , 1994 , 245, 260-4		25
70	The gut microbial metabolome: modulation of cancer risk in obese individuals. <i>Proceedings of the Nutrition Society</i> , 2013 , 72, 178-88	2.9	24
69	Nutritional influences on the gut microbiota and the consequences for gastrointestinal health. <i>Biochemical Society Transactions</i> , 2011 , 39, 1073-8	5.1	24
68	Formate cross-feeding and cooperative metabolic interactions revealed by transcriptomics in co-cultures of acetogenic and amylolytic human colonic bacteria. <i>Environmental Microbiology</i> , 2019 , 21, 259-271	5.2	24
67	Multiplicity and expression of xylanases in the rumen cellulolytic bacteriumRuminococcus flavefaciens. <i>Current Microbiology</i> , 1994 , 29, 139-143	2.4	23
66	The properties of forms of Ruminococcus flavefaciens which differ in their ability to degrade cotton cellulose. <i>FEMS Microbiology Letters</i> , 1990 , 72, 47-50	2.9	23
65	Cellulosomics, a gene-centric approach to investigating the intraspecific diversity and adaptation of Ruminococcus flavefaciens within the rumen. <i>PLoS ONE</i> , 2011 , 6, e25329	3.7	23
64	Expression of cellulosome components and type IV pili within the extracellular proteome of Ruminococcus flavefaciens 007. <i>PLoS ONE</i> , 2013 , 8, e65333	3.7	22
63	Cloning of the arg-12 gene of Neurospora crassa and regulation of its transcript via cross-pathway amino acid control. <i>Molecular Genetics and Genomics</i> , 1986 , 203, 110-6		22
62	Pivotal Roles for pH, Lactate, and Lactate-Utilizing Bacteria in the Stability of a Human Colonic Microbial Ecosystem. <i>MSystems</i> , 2020 , 5,	7.6	22
61	Dietary fibers inhibit obesity in mice, but host responses in the cecum and liver appear unrelated to fiber-specific changes in cecal bacterial taxonomic composition. <i>Scientific Reports</i> , 2018 , 8, 15566	4.9	22
60	The significance of prokaryote diversity in the human gastrointestinal tract65-90		21
59	Effects of esculin and esculetin on the survival of Escherichia coli O157 in human faecal slurries, continuous-flow simulations of the rumen and colon and in calves. <i>British Journal of Nutrition</i> , 2004 , 91, 749-55	3.6	21
58	A newEscherichia coli: Bacteroides shuttle vector, pRRI207, based on theBacteroides ruminicola plasmid replicon pRRI2. <i>Current Microbiology</i> , 1992 , 24, 49-54	2.4	21
57	Changes in gene expression elicited by amino acid limitation in Neurospora crassa strains having normal or mutant cross-pathway amino acid control. <i>Molecular Genetics and Genomics</i> , 1985 , 200, 283-9	90	21

(2001-2017)

56	Complexity of the Ruminococcus flavefaciens FD-1 cellulosome reflects an expansion of family-related protein-protein interactions. <i>Scientific Reports</i> , 2017 , 7, 42355	4.9	20
55	A representative of the dominant human colonic Firmicutes, Roseburia faecis M72/1, forms a novel bacteriocin-like substance. <i>Anaerobe</i> , 2013 , 23, 5-8	2.8	20
54	Use of a cellulase-encoding gene probe to reveal restriction fragment length polymorphisms among ruminal strains ofBacteroides succinogenes. <i>Current Microbiology</i> , 1990 , 20, 63-67	2.4	20
53	Sequence of a cellulase gene from the rumen anaerobe Ruminococcus flavefaciens 17. <i>Molecular Genetics and Genomics</i> , 1991 , 228, 320-3		19
52	Genetic diversity in Selenmonas ruminantium isolated from the rumen. <i>FEMS Microbiology Letters</i> , 1990 , 73, 351-359	2.9	19
51	Relative abundance of the Prevotella genus within the human gut microbiota of elderly volunteers determines the inter-individual responses to dietary supplementation with wheat bran arabinoxylan-oligosaccharides. <i>BMC Microbiology</i> , 2020 , 20, 283	4.5	18
50	Distribution of xylanase genes and enzymes among strains of Prevotella (Bacteroides) ruminicolafrom the rumen. <i>FEMS Microbiology Letters</i> , 1992 , 99, 137-143	2.9	16
49	Impact of carbohydrate substrate complexity on the diversity of the human colonic microbiota. <i>FEMS Microbiology Ecology</i> , 2019 , 95,	4.3	16
48	Cohesin diversity revealed by the crystal structure of the anchoring cohesin from Ruminococcus flavefaciens. <i>Proteins: Structure, Function and Bioinformatics</i> , 2009 , 77, 699-709	4.2	15
47	EGlucan is a major growth substrate for human gut bacteria related to Coprococcus eutactus. <i>Environmental Microbiology</i> , 2020 , 22, 2150-2164	5.2	13
46	Lysozyme activity of the Ruminococcus champanellensis cellulosome. <i>Environmental Microbiology</i> , 2016 , 18, 5112-5122	5.2	12
45	pH feedback and phenotypic diversity within bacterial functional groups of the human gut. <i>Journal of Theoretical Biology</i> , 2014 , 342, 62-9	2.3	12
44	Organisation and Variable Incidence of Genes Concerned with the Utilization of Xylans in the Rumen Cellulolytic Bacterium Ruminococcus flavefaciens. <i>Anaerobe</i> , 2000 , 6, 333-340	2.8	12
43	microPop: Modelling microbial populations and communities in R. <i>Methods in Ecology and Evolution</i> , 2018 , 9, 399-409	7.7	11
42	Transfer of conjugative elements from rumen and human Firmicutes bacteria to Roseburia inulinivorans. <i>Applied and Environmental Microbiology</i> , 2008 , 74, 3915-7	4.8	9
41	Highly conserved DNA sequence present in small plasmids from Selenomonas ruminantium. <i>Plasmid</i> , 2000 , 44, 94-9	3.3	9
40	Functional phylotyping approach for assessing intraspecific diversity of Ruminococcus albus within the rumen microbiome. <i>FEMS Microbiology Letters</i> , 2015 , 362, 1-10	2.9	8
39	Adaptation of Ruminococcus flavefaciens resulting in increased degradation of ryegrass cell walls. <i>FEMS Microbiology Ecology</i> , 2001 , 36, 131-137	4.3	8

38	Complete Genome Sequence of the Human Gut Symbiont Roseburia hominis. <i>Genome Announcements</i> , 2015 , 3,		7
37	Objections to the proposed reclassification of Eubacterium rectale as Agathobacter rectalis. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2016 , 66, 2106	2.2	7
36	Nondigestible Carbohydrates Affect Metabolic Health and Gut Microbiota in Overweight Adults after Weight Loss. <i>Journal of Nutrition</i> , 2020 , 150, 1859-1870	4.1	6
35	Sequence analysis of the plasmid pRRI2 from the rumen bacterium Prevotella ruminicola 223/M2/7 and the use of pRRI2 in Prevotella/Bacteroides Shuttle Vectors. <i>Plasmid</i> , 2001 , 45, 227-32	3.3	6
34	Heterologous gene expression in the human gut bacteria Eubacterium rectale and Roseburia inulinivorans by means of conjugative plasmids. <i>Anaerobe</i> , 2019 , 59, 131-140	2.8	5
33	Restricted activation of general amino acid control under conditions of glutamine limitation in Neurospora crassa. <i>Molecular Genetics and Genomics</i> , 1990 , 223, 443-8		5
32	The genetic manipulation of rumen bacteria with special reference to fibre digestion. <i>Animal Feed Science and Technology</i> , 1991 , 32, 123-129	3	5
31	Genetically modified organisms: consequences for ruminant health and nutrition. <i>Animal Research</i> , 2000 , 49, 255-271		4
30	Cellulase Systems of Anaerobic Microorganisms from the Rumen and Large Intestine393-406		4
29	Comparative genetic and physiological characterisation of Pectinatus species reveals shared tolerance to beer-associated stressors but halotolerance specific to pickle-associated strains. <i>Food Microbiology</i> , 2020 , 90, 103462	6	3
28	Expression of a cellulase gene, celA, from the rumen fungus Neocallimastix patriciarum in Streptococcus bovis by means of promoter fusions. <i>Biotechnology Letters</i> , 2002 , 24, 735-741	3	3
27	Plant cell wall degrading enzyme complexes from the cellulolytic rumen bacterium Ruminococcus flavefaciens. <i>Biochemical Society Transactions</i> , 1998 , 26, S169	5.1	3
26	Distribution, organization and expression of genes concerned with anaerobic lactate utilization in human intestinal bacteria <i>Microbial Genomics</i> , 2022 , 8,	4.4	3
25	Gut Microbiome and Obesity 2014 , 73-82		3
24	Advanced Technologies for Biomass Hydrolysis and Saccharification Using Novel Enzymes199-212		3
23	Roseburia 2015 , 1-7		2
22	BACTEROIDES AND PREVOTELLA 1999 , 198-203		2
21	Evaluation of bacterial biomarkers to aid in challenging inflammatory bowel diseases diagnostics and subtype classification. <i>World Journal of Gastrointestinal Pathophysiology</i> , 2020 , 11, 64-77	3.2	2

20	Prevotella bryantii, P. ruminicola and Bacteroides Strains 2000 , 140-149		2
19	The Microbiology of Resistant Starch Fermentation in the Human Large Intestine: A Host of Unanswered Questions 2013 , 251-266		1
18	A cysteine desulphurase gene from the cellulolytic rumen anaerobe Ruminococcus flavefaciens. <i>BBA - Proteins and Proteomics</i> , 1998 , 1386, 233-7		1
17	Streptococcus bovis as a host for the expression of cloned polysaccharidase genes. <i>Biotechnology Letters</i> , 2001 , 23, 501-505	3	1
16	Variability and Stability of the Human Gut Microbiome. Fascinating Life Sciences, 2020, 63-79	1.1	1
15	Impact of Intestinal Microbial Communities upon Health 2012 , 243-252		1
14	Higher total faecal short chain fatty concentrations correlate with increasing proportions of butyrate and decreasing proportions of branched chain fatty acids across multiple human studies1-23		1
13	How Gut Micro-organisms Make Use of Available Carbohydrates. Fascinating Life Sciences, 2020 , 81-96	1.1	O
12	Type IV pili are widespread among non-pathogenic Gram-positive gut bacteria with diverse carbohydrate utilization patterns. <i>Environmental Microbiology</i> , 2021 , 23, 1527-1540	5.2	О
11	Faecalibacterium 2015 , 1-6		
10	Molecular Biology: Microbial 2011 , 798-801		
9	Modulation experiments and fluxes in vivo in Neurospora crassa. <i>Biochemical Society Transactions</i> , 1983 , 11, 87-87	5.1	
8	How Microbes Gain Energy with and Without Oxygen. Fascinating Life Sciences, 2020, 31-45	1.1	
7	Do My Microbes Make Me Fat? Potential for the Gut Microbiota to Influence Energy Balance, Obesity and Metabolic Health in Humans. <i>Fascinating Life Sciences</i> , 2020 , 97-108	1.1	
6	How to Analyse Microbial Communities?. Fascinating Life Sciences, 2020, 15-29	1.1	
5	Gut Microbes and Metabolites. Fascinating Life Sciences, 2020, 109-118	1.1	
4	Perspectives and Prospects. Fascinating Life Sciences, 2020, 137-146	1.1	
3	Who Inhabits Our Gut? Introducing the Human Gut Microbiota. Fascinating Life Sciences, 2020, 47-61	1.1	

Treating the Gut Microbiome as a System. Fascinating Life Sciences, 2020, 127-135

1.1

Microorganisms in the human gut: Diversity and function. Biochemist, 2011, 33, 4-9

0.5