

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1188791/publications.pdf Version: 2024-02-01

XIANG GAO

#	Article	IF	CITATIONS
1	Selective death of newborn neurons in hippocampal dentate gyrus following moderate experimental traumatic brain injury. Journal of Neuroscience Research, 2008, 86, 2258-2270.	2.9	113
2	Traumatic Brain Injury Severity Affects Neurogenesis in Adult Mouse Hippocampus. Journal of Neurotrauma, 2016, 33, 721-733.	3.4	102
3	Moderate traumatic brain injury promotes proliferation of quiescent neural progenitors in the adult hippocampus. Experimental Neurology, 2009, 219, 516-523.	4.1	90
4	Moderate Traumatic Brain Injury Triggers Rapid Necrotic Death of Immature Neurons in the Hippocampus. Journal of Neuropathology and Experimental Neurology, 2012, 71, 348-359.	1.7	71
5	Moderate traumatic brain injury promotes neural precursor proliferation without increasing neurogenesis in the adult hippocampus. Experimental Neurology, 2013, 239, 38-48.	4.1	71
6	Controlled Cortical Impact Model for Traumatic Brain Injury. Journal of Visualized Experiments, 2014, , e51781.	0.3	64
7	In vivo reprogramming reactive glia into iPSCs to produce new neurons in the cortex following traumatic brain injury. Scientific Reports, 2016, 6, 22490.	3.3	59
8	The proliferation of amplifying neural progenitor cells is impaired in the aging brain and restored by the mTOR pathway activation. Neurobiology of Aging, 2015, 36, 1716-1726.	3.1	56
9	HIV Tat Impairs Neurogenesis through Functioning As a Notch Ligand and Activation of Notch Signaling Pathway. Journal of Neuroscience, 2016, 36, 11362-11373.	3.6	45
10	Post-Injury Treatment of 7,8-Dihydroxyflavone Promotes Neurogenesis in the Hippocampus of the Adult Mouse. Journal of Neurotrauma, 2016, 33, 2055-2064.	3.4	35
11	Traumatic Brain Injury Stimulates Neural Stem Cell Proliferation via Mammalian Target of Rapamycin Signaling Pathway Activation. ENeuro, 2016, 3, ENEURO.0162-16.2016.	1.9	22
12	PD-L1 signaling in reactive astrocytes counteracts neuroinflammation and ameliorates neuronal damage after traumatic brain injury. Journal of Neuroinflammation, 2022, 19, 43.	7.2	21
13	Postnatal dysregulation of Notch signal disrupts dendrite development of adult-born neurons in the hippocampus and contributes to memory impairment. Scientific Reports, 2016, 6, 25780.	3.3	20
14	Aberrant Adult Neurogenesis in the Subventricular Zone-Rostral Migratory Stream-Olfactory Bulb System Following Subchronic Manganese Exposure. Toxicological Sciences, 2016, 150, 347-368.	3.1	19
15	Phosphorylation of NMDA 2B at S1303 in human glioma peritumoral tissue: implications for glioma epileptogenesis. Neurosurgical Focus, 2014, 37, E17.	2.3	17
16	Delayed and progressive damages to juvenile mice after moderate traumatic brain injury. Scientific Reports, 2018, 8, 7339.	3.3	16
17	Activation of death-associated protein kinase in human peritumoral tissue: A potential therapeutic target. Journal of Clinical Neuroscience, 2015, 22, 1655-1660.	1.5	9

18 Modeling traumatic brain injury using a compressed-gas blast chamber. , 2011, , .

2