
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11887596/publications.pdf Version: 2024-02-01

WISE YOUNG

#	Article	IF	CITATIONS
1	A Randomized, Controlled Trial of Methylprednisolone or Naloxone in the Treatment of Acute Spinal-Cord Injury. New England Journal of Medicine, 1990, 322, 1405-1411.	13.9	2,680
2	International Standards for Neurological and Functional Classification of Spinal Cord Injury. Spinal Cord, 1997, 35, 266-274.	0.9	1,615
3	Methylprednisolone or naloxone treatment after acute spinal cord injury: 1-year follow-up data. Journal of Neurosurgery, 1992, 76, 23-31.	0.9	624
4	Methylprednisolone or tirilazad mesylate administration after acute spinal cord injury: 1-year follow up. Journal of Neurosurgery, 1998, 89, 699-706.	0.9	462
5	The effects of methylprednisolone and the ganglioside GM1 on acute spinal cord injury in rats. Journal of Neurosurgery, 1994, 80, 97-111.	0.9	300
6	Effect of high-dose corticosteroid therapy on blood flow, evoked potentials, and extracellular calcium in experimental spinal injury. Journal of Neurosurgery, 1982, 57, 667-673.	0.9	290
7	Methylprednisolone and neurological function 1 year after spinal cord injury. Journal of Neurosurgery, 1985, 63, 704-713.	0.9	281
8	Chapter 17 Spinal cord contusion models. Progress in Brain Research, 2002, 137, 231-255.	0.9	245
9	Review of Lithium Effects on Brain and Blood. Cell Transplantation, 2009, 18, 951-975.	1.2	225
10	Macrophages in spinal cord injury: Phenotypic and functional change from exposure to myelin debris. Glia, 2015, 63, 635-651.	2.5	209
11	Effect of naloxone on posttraumatic ischemia in experimental spinal contusion. Journal of Neurosurgery, 1981, 55, 209-219.	0.9	189
12	Spinal Microgliosis Due to Resident Microglial Proliferation Is Required for Pain Hypersensitivity after Peripheral Nerve Injury. Cell Reports, 2016, 16, 605-614.	2.9	187
13	Extracellular calcium ionic activity in experimental spinal cord contusion. Brain Research, 1982, 253, 105-113.	1.1	186
14	Potassium and calcium changes in injured spinal cords. Brain Research, 1986, 365, 42-53.	1,1	184
15	Central axons in injured cat spinal cord recover electrophysiological function following remyelination by Schwann cells. Journal of the Neurological Sciences, 1989, 91, 15-34.	0.3	183
16	Topological data analysis for discovery in preclinical spinal cord injury and traumatic brain injury. Nature Communications, 2015, 6, 8581.	5.8	153
17	The Recovery of 5-HT Immunoreactivity in Lumbosacral Spinal Cord and Locomotor Function after Thoracic Hemisection. Experimental Neurology, 1996, 139, 203-213.	2.0	148
18	Gene expression profiling of acute spinal cord injury reveals spreading inflammatory signals and neuron loss. Physiological Genomics, 2001, 7, 201-213.	1.0	139

#	Article	IF	CITATIONS
19	Cytokine activity contributes to induction of inflammatory cytokine mRNAs in spinal cord following contusion. Journal of Neuroscience Research, 2002, 68, 315-322.	1.3	136
20	Regulation of Trk Receptors Following Contusion of the Rat Spinal Cord. Experimental Neurology, 2001, 167, 15-26.	2.0	106
21	Myelin Activates FAK/Akt/NF-κB Pathways and Provokes CR3-Dependent Inflammatory Response in Murine System. PLoS ONE, 2010, 5, e9380.	1.1	99
22	Soluble Cell Adhesion Molecule L1-Fc Promotes Locomotor Recovery in Rats after Spinal Cord Injury. Journal of Neurotrauma, 2003, 20, 871-882.	1.7	98
23	Spinal Cord Sodium, Potassium, Calcium, and Water Concentration Changes in Rats After Graded Contusion Injury. Journal of Neurotrauma, 1989, 6, 13-24.	1.7	96
24	Somatosensory evoked potentials during spinal angiography and therapeutic transvascular embolization. Journal of Neurosurgery, 1984, 60, 777-785.	0.9	95
25	Activation of Complement Pathways after Contusion-Induced Spinal Cord Injury. Journal of Neurotrauma, 2004, 21, 1831-1846.	1.7	94
26	Phase l–II Clinical Trial Assessing Safety and Efficacy of Umbilical Cord Blood Mononuclear Cell Transplant Therapy of Chronic Complete Spinal Cord Injury. Cell Transplantation, 2016, 25, 1925-1943.	1.2	94
27	Managing Inflammation after Spinal Cord Injury through Manipulation of Macrophage Function. Neural Plasticity, 2013, 2013, 1-9.	1.0	92
28	Spinal Cord Regeneration. Cell Transplantation, 2014, 23, 573-611.	1.2	89
29	Experimental Spinal Cord Injury. Neurosurgery, 1982, 10, 227-231.	0.6	84
30	Osteopontin-Deficient Mice Exhibit Less Inflammation, Greater Tissue Damage, and Impaired Locomotor Recovery from Spinal Cord Injury Compared with Wild-Type Controls. Journal of Neuroscience, 2007, 27, 3603-3611.	1.7	81
31	Clinical Neurorestorative Therapeutic Guidelines for Spinal Cord Injury (IANR/CANR version 2019). Journal of Orthopaedic Translation, 2020, 20, 14-24.	1.9	73
32	Effect of sympathectomy on extracellular potassium ionic activity and blood flow in experimental spinal cord contusion. Brain Research, 1982, 253, 115-123.	1.1	69
33	A Phase I trial of naloxone treatment in acute spinal cord injury. Journal of Neurosurgery, 1985, 63, 390-397.	0.9	67
34	Experimental Spinal Cord Injury. Neurosurgery, 1982, 10, 227-231.	0.6	63
35	Mediators of ischemic preconditioning identified by microarray analysis of rat spinal cord. Experimental Neurology, 2004, 185, 81-96.	2.0	60
36	Intraspinal Localization of the Somatosensory Evoked Potential. Neurosurgery, 1981, 9, 157-162.	0.6	59

#	Article	IF	CITATIONS
37	Targeting mTOR as a novel therapeutic strategy for traumatic CNS injuries. Drug Discovery Today, 2012, 17, 861-868.	3.2	59
38	Electrical Stimulation and Motor Recovery. Cell Transplantation, 2015, 24, 429-446.	1.2	58
39	Acute Physiological Effects of Ultrasonic Vibrations on Nervous Tissue. Neurosurgery, 1981, 8, 689-694.	0.6	57
40	Single, High-Dose Intraspinal Injection of Chondroitinase Reduces Clycosaminoglycans in Injured Spinal Cord and Promotes Corticospinal Axonal Regrowth after Hemisection but Not Contusion. Journal of Neurotrauma, 2008, 25, 334-349.	1.7	56
41	The Post-Injury Responses in Trauma and Ischemia: Secondary Injury or Protective Mechanisms?. Central Nervous System Trauma: Journal of the American Paralysis Association, 1987, 4, 27-51.	0.7	55
42	Somatosensory evoked potentials (SEPs) and cortical single unit responses elicited by mechanical tactile stimuli in awake monkeys. Electroencephalography and Clinical Neurophysiology, 1984, 58, 537-552.	0.3	51
43	Rescuing macrophage normal function in spinal cord injury with embryonic stem cell conditioned media. Molecular Brain, 2016, 9, 48.	1.3	45
44	Effect of sympathectomy on spinal blood flow autoregulation and posttraumatic ischemia. Journal of Neurosurgery, 1982, 56, 706-710.	0.9	42
45	MIF Produced by Bone Marrow–Derived Macrophages Contributes to Teratoma Progression after Embryonic Stem Cell Transplantation. Cancer Research, 2012, 72, 2867-2878.	0.4	40
46	Clinical Cell Therapy Guidelines for Neurorestoration (IANR/CANR 2017). Cell Transplantation, 2018, 27, 310-324.	1.2	40
47	Balance reactions and eye-hand coordination in idiopathic scoliosis. Journal of Orthopaedic Research, 1986, 4, 102-107.	1.2	39
48	Non-synaptic modulation of dorsal column conduction by endogenous GABA in neonatal rat spinal cord. Brain Research, 1993, 622, 43-50.	1.1	39
49	The Role of Calcium in Spinal Cord Injury. Central Nervous System Trauma: Journal of the American Paralysis Association, 1985, 2, 109-114.	0.7	38
50	Early neurosurgical intervention of spinal cord contusion: an analysis of 30 cases. Chinese Medical Journal, 2008, 121, 2473-2478.	0.9	38
51	Glucocorticoid Therapy of Spinal Cord Injury. Annals of the New York Academy of Sciences, 1994, 743, 241-263.	1.8	37
52	Lithium Suppresses Astrogliogenesis by Neural Stem and Progenitor Cells by Inhibiting STAT3 Pathway Independently of Clycogen Synthase Kinase 3 Beta. PLoS ONE, 2011, 6, e23341.	1.1	35
53	Ca Paradox in Neural Injury: A Hypothesis. Central Nervous System Trauma: Journal of the American Paralysis Association, 1986, 3, 235-251.	0.7	33
54	Role of Glycemia in Acute Spinal Cord Injury: Data from a Rat Experimental Model and Clinical Experience. Annals of the New York Academy of Sciences, 1999, 890, 133-154.	1.8	33

WISE YOUNG

#	Article	IF	CITATIONS
55	Xenotransplantation of Transgenic Oligodendrocyte-Lineage Cells into Spinal Cord-Injured Adult Rats. Experimental Neurology, 1997, 147, 172-182.	2.0	32
56	Effect of Mianserin on Locomotory Function after Thoracic Spinal Cord Hemisection in Rats. Experimental Neurology, 1994, 129, 207-216.	2.0	30
57	Clinical Measurement, Statistical Analysis, and Risk-Benefit: Controversies from Trials of Spinal Injury. Journal of Trauma, 2000, 48, 558-561.	2.3	30
58	NASCIS. Journal of Neurotrauma, 1990, 7, 113-114.	1.7	29
59	The role of the sympathetic nervous system in pressor responses induced by spinal injury. Journal of Neurosurgery, 1980, 52, 473-481.	0.9	28
60	Embryonic Stem Cells Promoting Macrophage Survival and Function are Crucial for Teratoma Development. Frontiers in Immunology, 2014, 5, 275.	2.2	28
61	A Consistent, Quantifiable, and Graded Rat Lumbosacral Spinal Cord Injury Model. Journal of Neurotrauma, 2015, 32, 875-892.	1.7	27
62	Vestibulospinal monitoring in experimental spinal trauma. Journal of Neurosurgery, 1980, 52, 64-72.	0.9	26
63	The Effects of Arterial Blood Gas Values on Lesion Volumes in a Graded Rat Spinal Cord Contusion Model. Journal of Neurotrauma, 1994, 11, 547-562.	1.7	26
64	Therapeutic time window for methylprednisolone in spinal cord injured rat. Yonsei Medical Journal, 1999, 40, 313.	0.9	26
65	Bridging the Gap: From Discovery to Clinical Trials in Spinal Cord Injury. Journal of Neurotrauma, 2000, 17, 1117-1128.	1.7	25
66	Lithium promotes neural precursor cell proliferation: evidence for the involvement of the non-canonical GSK-3Î ² -NF-AT signaling. Cell and Bioscience, 2011, 1, 18.	2.1	25
67	Upregulation of Complement Inhibitors in Association with Vulnerable Cells following Contusion-Induced Spinal Cord Injury. Journal of Neurotrauma, 2005, 22, 382-397.	1.7	24
68	Spreading depression in elasmobranch cerebellum. Brain Research, 1980, 199, 113-126.	1.1	23
69	A comprehensive study of long-term skeletal changes after spinal cord injury in adult rats. Bone Research, 2015, 3, 15028.	5.4	22
70	Quantitative Analysis of SSEA3+ Cells from Human Umbilical Cord after Magnetic Sorting. Cell Transplantation, 2019, 28, 907-923.	1.2	20
71	Tissue Na, K, and Ca Changes in Regional Cerebral Ischemia: Their Measurement and Interpretation. Central Nervous System Trauma: Journal of the American Paralysis Association, 1986, 3, 215-234.	0.7	19
72	A role of GABAA receptors in hypoxia-induced conduction failure of neonatal rat spinal dorsal column axons. Brain Research, 1993, 601, 14-19.	1.1	19

#	Article	IF	CITATIONS
73	MASCIS Spinal Cord Contusion Model. Springer Protocols, 2009, , 411-421.	0.1	18
74	Editorial. Journal of Neurotrauma, 1991, 8, 1-2.	1.7	17
75	Rapid Induction of Genes Associated with Tissue Protection and Neural Development in Contused Adult Spinal Cord after Radial Glial Cell Transplantation. Journal of Neurotrauma, 2009, 26, 979-993.	1.7	15
76	Field potential analysis in elasmobranch cerebellum. Brain Research, 1980, 199, 101-112.	1.1	13
77	Plasma-Depleted versus Red Cell-Reduced Umbilical Cord Blood. Cell Transplantation, 2014, 23, 407-415.	1.2	13
78	Excavating FAIR Data: the Case of the Multicenter Animal Spinal Cord Injury Study (MASCIS), Blood Pressure, and Neuro-Recovery. Neuroinformatics, 2022, 20, 39-52.	1.5	10
79	The Vestibulospinal Free Fall Response: A Test of Descending Function in Spinal-Injured Cats. Central Nervous System Trauma: Journal of the American Paralysis Association, 1984, 1, 139-159.	0.7	9
80	Future of Muse Cells. Advances in Experimental Medicine and Biology, 2018, 1103, 309-315.	0.8	8
81	Effect of pulsed electromagnetic fields on calcium tissue changes in focal ischaemia. Neurological Research, 1990, 12, 95-98.	0.6	7
82	Effects of Methylprednisolone on Axonal Depression Induced by Hypoxia, Î ³ -Aminobutyric Acid, and (±)-8-Hydroxy-Dipropylaminotetralin Hydrobromide. Neurosurgery, 2002, 51, 1477-1483.	0.6	7
83	Rapid Quantification of Tissue Damage for Assessing Acute Spinal Cord Injury Therapy. Journal of Neurotrauma, 1992, 9, 151-155.	1.7	6
84	Myristoylated alanineâ€rich Câ€kinase substrate effector domain peptide improves sexâ€specific recovery and axonal regrowth after spinal cord injury. FASEB Journal, 2020, 34, 12677-12690.	0.2	6
85	Umbilical Cord Blood Mononuclear Cell Treatment for Neonatal Rats With Hypoxic Ischemia. Frontiers in Cellular Neuroscience, 2022, 16, 823320.	1.8	6
86	Spinal Cord Regeneration. , 2015, , 383-399.		5
87	Molecular and Cellular Mechanisms of Spinal Cord Injury Therapies. , 2000, , 241-276.		5
88	A new Hypoxic Ischemic Encephalopathy model in neonatal rats. Heliyon, 2021, 7, e08646.	1.4	5
89	Total Phosphate Determination in Brain Tissues: A Method for Regional Determination of Total Phosphate in Rat Brain. Central Nervous System Trauma: Journal of the American Paralysis Association, 1987, 4, 53-61.	0.7	3
90	Flipping the transcriptional switch from myelin inhibition to axon growth in the CNS. Frontiers in Molecular Neuroscience, 2015, 8, 34.	1.4	3

WISE YOUNG

#	Article	IF	CITATIONS
91	Axonal Morphometric Correlates of Evoked Potentials in Experimental Spinal Cord Injury. , 1990, , 87-113.		3
92	Neurorehabilitation of Spinal Cord Injury. Neurorehabilitation and Neural Repair, 1994, 8, 3-9.	1.4	2
93	Effects of N-Methyl-D-Aspartate, Glutamate, and Glycine on the Dorsal Column Axons of Neonatal Rat Spinal Cord: In Vitro Study. Neurologia Medico-Chirurgica, 2005, 45, 73-81.	1.0	2
94	Glutamine synthetase protects the spinal cord against hypoxia-induced and GABAA receptor–activated axonal depressions. World Neurosurgery, 2008, 70, 122-128.	1.3	2
95	Adhesion molecule L1 inhibition increases infarct size in cerebral ischemia-reperfusion without change in blood-brain barrier disruption. Neurological Research, 2021, 43, 751-759.	0.6	2
96	Methylprednisolone or tirilazad mesylate administration after acute spinal cord injury: 1-year follow up. Neurosurgical Focus, 1998, 5, E1.	1.0	1
97	Effects of Methylprednisolone on Axonal Depression Induced by Hypoxia, ??-Aminobutyric Acid, and (??)-8-Hydroxy-Dipropylaminotetralin Hydrobromide. Neurosurgery, 2002, 51, 1477-1483.	0.6	1
98	Christopher Reeve: Activist and Friend of Science. Journal of Neurotrauma, 2005, 22, 1-2.	1.7	1
99	Neurophysiological Mechanisms of Somatosensory-Evoked Potential Changes. , 1990, , 115-148.		1
100	The Immunohistochemical Characterization of Human Fetal Olfactory Bulb and Olfactory Ensheathing Cells in Culture as a Source for Clinical CNS Restoration. Anatomical Record, 2010, 293, spc1-spc1.	0.8	0
101	Spinal cord injury clinical trials. , 0, , 322-333.		0
102	Spinal Cord and Peripheral Nerve Regeneration Current Research and Future Possibilities. , 2017, , 357-389.		0
103	The MASCIS Spinal Cord Contusion Model. Springer Series in Translational Stroke Research, 2019, , 403-414.	0.1	0