List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1188758/publications.pdf Version: 2024-02-01

CHAN-HEE LUNC

#	Article	IF	CITATIONS
1	Ion beam fabrication of an antifouling Pluronic F-108 thin film-based microwell bioplatform for highly resolved cell microarrays. Applied Surface Science, 2022, 573, 151551.	6.1	1
2	Performance improvement of poly(acrylic acid) binder-based silicon/graphite composite anodes by room temperature electron beam irradiation-induced crosslinking. Radiation Physics and Chemistry, 2022, 196, 110107.	2.8	6
3	Highly-dispersible reduced graphene oxide/polymer nanocomposites as efficient hole-transporting materials for perovskite solar cells. Composites Science and Technology, 2021, 201, 108548.	7.8	10
4	Preparation and characterization of solution-processible polymer-grafted reduced graphene oxide by a radiation technology. Radiation Physics and Chemistry, 2020, 166, 108504.	2.8	6
5	Electrically stimulable indium tin oxide plate for long-term in vitro cardiomyocyte culture. Biomaterials Research, 2020, 24, 10.	6.9	8
6	Structural design considerations of solution-processable graphenes as interfacial materials <i>via</i> a controllable synthesis method for the achievement of highly efficient, stable, and printable planar perovskite solar cells. Nanoscale, 2019, 11, 890-900.	5.6	10
7	Fabrication of Wettability-Patterned Surface for Cellular Micropatterning Using Step-Wise Ion Beam Processing. Journal of Nanoscience and Nanotechnology, 2019, 19, 4647-4650.	0.9	1
8	Electron beam-based fabrication of crosslinked hydrophilic carbon electrodes and their application for capacitive deionization. RSC Advances, 2019, 9, 9684-9691.	3.6	5
9	Conductive carbon nanosheets prepared from brominated polystyrene through ion beam irradiation and carbonization. Radiation Physics and Chemistry, 2019, 159, 6-11.	2.8	2
10	Preparation and electrical-property characterization of poly(vinyl chloride)-derived carbon nanosheet by ion beam irradiation-induced carbon clustering and carbonization. Applied Surface Science, 2018, 439, 968-975.	6.1	7
11	Fabrication of large Pt nanoparticles-decorated rGO counter electrode for highly efficient DSSCs. Journal of Industrial and Engineering Chemistry, 2018, 65, 318-324.	5.8	14
12	Preparation of conductive carbon films from polyacrylonitrile/graphene oxide composite films by thermal treatment. Journal of Industrial and Engineering Chemistry, 2018, 58, 87-91.	5.8	34
13	Fabrication and electric heating behavior of carbon thin films from water-soluble poly(vinyl alcohol) via simple dry and ambient stabilization and carbonization. Applied Surface Science, 2018, 456, 561-567.	6.1	16
14	Synthesis of a Graphene-Like Nanofilm from Polyacrylonitrile. Journal of Nanoscience and Nanotechnology, 2017, 17, 2503-2507.	0.9	3
15	Preparation of Conductive Carbon Films from Poly(vinyl alcohol) by Chemical Pre-Treatment and Pyrolysis. Journal of Nanoscience and Nanotechnology, 2017, 17, 5481-5484.	0.9	5
16	Preparation of porous carbon films from polyacrylonitrile by proton irradiation and carbonization. Radiation Physics and Chemistry, 2017, 141, 369-374.	2.8	10
17	Polyacrylonitrile-grafted reduced graphene oxide hybrid: An all-round and efficient hole-extraction material for organic and inorganic-organic hybrid photovoltaics. Nano Energy, 2017, 31, 19-27.	16.0	39
18	Preparation of Thin Porous Carbon Membranes from Polyacrylonitrile by Phase Separation and Heat Treatment. Journal of Nanoscience and Nanotechnology, 2017, 17, 5822-5825.	0.9	9

#	Article	IF	CITATIONS
19	Simple and Mass-Producible Radiolytic Reduction of Graphene Oxide Suspensions in <i>N</i> , <i>N</i>) -Dimethylformamide. Science of Advanced Materials, 2017, 9, 157-160.	0.7	1
20	Facile construction of electrically-conductive carbon patterns from a cheap coal-type pitch and their application to electric heating devices. Journal of Industrial and Engineering Chemistry, 2016, 39, 188-193.	5.8	7
21	Simple and Biocompatible Ion Beam Micropatterning of a Cell-Repellent Polymer on Cell-Adhesive Surfaces to Manipulate Cell Adhesion. Journal of Biomedical Nanotechnology, 2016, 12, 387-393.	1.1	5
22	Electron-beam-induced reduced graphene oxide as an alternative hole-transporting interfacial layer for high-performance and reliable polymer solar cells. Organic Electronics, 2016, 34, 67-74.	2.6	28
23	Surface modification of Nafion membranes by ion implantation to reduce methanol crossover in direct methanol fuel cells. RSC Advances, 2016, 6, 62467-62470.	3.6	19
24	Preparation of Polyacrylonitrile/Graphene Oxide Nanocomposite-Derived Carbon Microstructures by Ion Beam Patterning and Post-Pyrolysis. Science of Advanced Materials, 2016, 8, 1714-1718.	0.7	4
25	Effects of Radiation on PS-b-PMMA Block Copolymer Micelles. Porrime, 2016, 40, 622.	0.2	0
26	A simple PAN-based fabrication method for microstructured carbon electrodes for organic field-effect transistors. Carbon, 2015, 87, 257-268.	10.3	22
27	Efficient modification of transparent graphene electrodes by electron beam irradiation for organic solar cells. Journal of Industrial and Engineering Chemistry, 2015, 26, 210-213.	5.8	13
28	Effect of Cross-Linking Density of Silicone Encapsulant on Sulfur Compound Gas Permeability of Light-Emitting Diode. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, 5, 163-167.	2.5	4
29	Morphological, optical, and electrical investigations of solution-processed reduced graphene oxide and its application to transparent electrodes in organic solar cells. Journal of Industrial and Engineering Chemistry, 2015, 21, 877-883.	5.8	17
30	Preparation of sulfonated reduced graphene oxide by radiation-induced chemical reduction of sulfonated graphene oxide. Carbon Letters, 2015, 16, 41-44.	5.9	11
31	Electrowetting Technique for Measuring the Thickness of Spin-Coated Hydrophobic Fluoropolymer Films. Science of Advanced Materials, 2015, 7, 869-873.	0.7	1
32	Microfluidic Chips: Active Digital Microfluidic Paper Chips with Inkjetâ€Printed Patterned Electrodes (Adv. Mater. 15/2014). Advanced Materials, 2014, 26, 2286-2286.	21.0	2
33	Preparation of flexible PLA/PEC-POSS nanocomposites by melt blending and radiation crosslinking. Radiation Physics and Chemistry, 2014, 102, 23-28.	2.8	43
34	High-performance polymer solar cells with radiation-induced and reduction-controllable reduced graphene oxide as an advanced hole transporting material. Carbon, 2014, 79, 321-329.	10.3	29
35	Simple and non-toxic fabrication of poly(vinyl alcohol)-patterned polymer surface for the formation of cell patterns. Applied Surface Science, 2014, 316, 179-186.	6.1	4
36	Experimental study on physical properties of nanoporous anodic aluminum oxide by proton implantation. Journal of Mechanical Science and Technology, 2014, 28, 3219-3222.	1.5	5

#	Article	IF	CITATIONS
37	Direct patterning of poly(acrylic acid) on polymer surfaces by ion beam lithography for the controlled adhesion of mammalian cells. Biotechnology Letters, 2014, 36, 2135-2142.	2.2	14
38	Rapid, facile, and eco-friendly reduction of graphene oxide by electron beam irradiation in an alcohol–water solution. Materials Letters, 2014, 126, 151-153.	2.6	28
39	Eco-friendly and simple radiation-based preparation of graphene and its application to organic solar cells. Journal Physics D: Applied Physics, 2014, 47, 015105.	2.8	13
40	Active Digital Microfluidic Paper Chips with Inkjetâ€Printed Patterned Electrodes. Advanced Materials, 2014, 26, 2335-2340.	21.0	128
41	Actuation of Digital Micro Drops by Electrowetting on Open Microfluidic Chips Fabricated in Photolithography. Journal of Nanoscience and Nanotechnology, 2014, 14, 5894-5897.	0.9	7
42	The Fabrication of Patterned Gold Nanoparticle Arrays via Selective Ion Irradiation and Plasma Treatment. Journal of Nanoscience and Nanotechnology, 2014, 14, 6158-6161.	0.9	0
43	Surface Enhanced Raman Scattering by Gold Nanoparticle-Decorated Reduced Graphene Oxide on ITO-Coated Glass. Science of Advanced Materials, 2014, 6, 2566-2571.	0.7	4
44	Patterning of Gold Nanoparticles on Fluoropolymer Films by Using Patterned Surface Grafting and Layer-by-Layer Deposition Techniques. ACS Applied Materials & Interfaces, 2013, 5, 8546-8552.	8.0	0
45	Efficient polymer solar cells with a solution-processed gold chloride as an anode interfacial modifier. Applied Physics Letters, 2013, 102, 163302.	3.3	13
46	Preparation and characterization of crosslinked poly(butylene adipate-co-terephthalate)/polyhedral oligomeric silsesquioxane nanocomposite by electron beam irradiation. Radiation Physics and Chemistry, 2013, 82, 100-105.	2.8	10
47	Fabrication and characterization of radiation-resistant LDPE/MWCNT nanocomposites. Journal of Nuclear Materials, 2013, 438, 41-45.	2.7	24
48	Cell patterning on poly(sodium 4-styrenesulfonate)-patterned fluoropolymer substrate. Nuclear Instruments & Methods in Physics Research B, 2013, 313, 54-59.	1.4	2
49	Fabrication and characterization of inkjet-printed carbon nanotube electrode patterns on paper. Carbon, 2013, 58, 116-127.	10.3	98
50	Poly(acrylic acid)-Grafted Fluoropolymer Films for Highly Sensitive Fluorescent Bioassays. ACS Applied Materials & Interfaces, 2013, 5, 2155-2160.	8.0	18
51	Electron beam irradiation effects on green biodegradable poly(ϵ-caprolactone) films. Journal of Adhesion Science and Technology, 2013, 27, 1374-1381.	2.6	3
52	Micropatterning of Cells on Electron-Irradiated Poly(dimethylsiloxane) Surface. Journal of Biomedical Nanotechnology, 2013, 9, 461-466.	1.1	1
53	Micropatterning of Mammalian Cells on Indium Tin Oxide Substrates Using Ion Implantation. Journal of Biomedical Nanotechnology, 2013, 9, 819-824.	1.1	4
54	Analysis of Thickness of a Hydrophobic Fluoropolymer Film Based on Electrowetting. Journal of Biomedical Nanotechnology, 2013, 9, 1250-1253.	1.1	1

#	Article	IF	CITATIONS
55	Patterning of TiO ₂ Particles on Poly(dimethyl siloxane) Films by Using Proton Irradiation and Liquid-Phase Deposition Process. Journal of Nanoscience and Nanotechnology, 2012, 12, 4284-4288.	0.9	0
56	The effects of energetic ion irradiation on metal-to-polymer adhesion. Radiation Physics and Chemistry, 2012, 81, 919-922.	2.8	10
57	Preparation and characterization of crosslinked poly(ε-caprolactone)/polyhedral oligomeric silsesquioxane nanocomposites by electron beam irradiation. Nuclear Instruments & Methods in Physics Research B, 2012, 287, 141-147.	1.4	5
58	Efficient Immobilization and Patterning of Biomolecules on Poly(ethylene terephthalate) Films Functionalized by Ion Irradiation for Biosensor Applications. ACS Applied Materials & Interfaces, 2011, 3, 2235-2239.	8.0	21
59	Surface Morphology Control of Polymer Films by Electron Irradiation and Its Application to Superhydrophobic Surfaces. ACS Applied Materials & amp; Interfaces, 2011, 3, 2988-2993.	8.0	21
60	Reversibility of Electrowetting on Hydrophobic Surfaces and Dielectrics Under Continuous Applied DC Voltage. Journal of Nanoscience and Nanotechnology, 2011, 11, 7132-7136.	0.9	2
61	Patterned Immobilization of Biomolecules on a Polymer Surface Functionalized by Radiation Grafting. Journal of Nanoscience and Nanotechnology, 2011, 11, 4562-4566.	0.9	2
62	Micropatterning of proteins on ion beamâ€induced poly(acrylic acid)â€grafted polyethylene film. Polymers for Advanced Technologies, 2011, 22, 1989-1992.	3.2	5
63	Patterning of Polymer Nanocomposite Resists Containing Metal Nanoparticles by Electron Beam Lithography. Journal of Nanoscience and Nanotechnology, 2011, 11, 7390-7393.	0.9	3
64	Micropatterning of Polymer-Embedded Metal Nanoparticles by an Ion Beam Contact Lithography. Journal of Nanoscience and Nanotechnology, 2010, 10, 6879-6882.	0.9	1
65	Cell patterning on a poly(N-vinyl pyrrolidone)-patterned polystyrene substrate by using ion implantation. Journal of Industrial and Engineering Chemistry, 2010, 16, 87-90.	5.8	4
66	Electron beam-induced crosslinking of poly(butylene adipate-co-terephthalate). Nuclear Instruments & Methods in Physics Research B, 2010, 268, 3386-3389.	1.4	20
67	Preparation of sulfonated crosslinked poly(2,6â€dimethylâ€1,4â€phenylene oxide) membranes for direct methanol fuel cells by using electron beam irradiation. Journal of Polymer Science Part A, 2010, 48, 2725-2731.	2.3	15
68	Patterning of cells on a PVC film surface functionalized by ion irradiation. Polymers for Advanced Technologies, 2010, 21, 135-138.	3.2	9
69	Simple and Biocompatible Micropatterning of Multiple Cell Types on a Polymer Substrate by Using Ion Implantation. Langmuir, 2010, 26, 18437-18441.	3.5	11
70	Photosensitive polymer brushes grafted onto PTFE film surface for micropatterning of proteins. Journal of Materials Chemistry, 2010, 20, 2007.	6.7	11
71	Surface modification of multi-walled carbon nanotubes by radiation-induced graft polymerization. Current Applied Physics, 2009, 9, S85-S87.	2.4	20
72	Patterned grafting of acrylic acid onto polymer substrates. Polymers for Advanced Technologies, 2009, 20, 173-177.	3.2	10

#	Article	IF	CITATIONS
73	Patterned immobilization of biomolecules by using ion irradiationâ€induced graft polymerization. Journal of Polymer Science Part A, 2009, 47, 6124-6134.	2.3	18
74	Cell patterning on a glass surface by a mask-assisted ion implantation. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 1089-1092.	1.4	1
75	Selective cell adhesion on an ion implanted poly(bisphenol A carbonate) film. Journal of Industrial and Engineering Chemistry, 2009, 15, 703-706.	5.8	3
76	Preparation of polymer/POSS nanocomposites by radiation processing. Radiation Physics and Chemistry, 2009, 78, 517-520.	2.8	24
77	Patterning of biomolecules on a poly(É>-caprolactone) film surface functionalized by ion implantation. Colloids and Surfaces B: Biointerfaces, 2009, 74, 375-379.	5.0	11
78	Micropatterning of Poly(vinyl pyrrolidone)/Silver Nanoparticle Thin Films by Ion Irradiation. Journal of Nanoscience and Nanotechnology, 2009, 9, 7090-3.	0.9	3
79	Functionalization of Carbon Nanotubes by Radiation-Induced Graft Polymerization. Journal of Nanoscience and Nanotechnology, 2009, 9, 7126-9.	0.9	4
80	Surface Functionalization of Poly(Ethylene Terephthalate) for Biomolecule Immobilization by Ion Implantation. Journal of the Korean Physical Society, 2009, 54, 2071-2075.	0.7	5
81	Preparation of polystyrene-grafted poly(vinylidene fluoride) membranes for lithium secondary batteries. Journal of Industrial and Engineering Chemistry, 2008, 14, 116-119.	5.8	14
82	Radiation-induced grafting of inorganic particles onto polymer backbone: A new method to design polymer-based nanocomposite. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 203-206.	1.4	22
83	Shortening of multi-walled carbon nanotubes by γ-irradiation in the presence of hydrogen peroxide. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 3491-3494.	1.4	16
84	Biocompatibility Improvement of Polytetrafluoroethylene by Ion Implantation. Journal of the Korean Physical Society, 2008, 52, 819-823.	0.7	7
85	Preparation of Patterned Polymer Brushes by Radiation-Induced Grafting. Journal of the Korean Physical Society, 2008, 52, 880-883.	0.7	1
86	Cell Patterning on Polystyrene by Ion Implantatio. Journal of the Korean Physical Society, 2008, 52, 884-887.	0.7	2
87	Preparation of Polypropylene Compatibilizer by Radiation Grafting and Its Effect on PP/Nylon 6 Blend. Macromolecular Symposia, 2007, 249-250, 573-579.	0.7	7