Trevor Hastie

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/11886670/trevor-hastie-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 76,636 87 95 g-index h-index citations papers 91,628 8.34 95 5.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
87	Significant sparse polygenic risk scores across 813 traits in UK Biobank <i>PLoS Genetics</i> , 2022 , 18, e1010	1 % 5	O
86	Wearable sensors enable personalized predictions of clinical laboratory measurements. <i>Nature Medicine</i> , 2021 , 27, 1105-1112	50.5	30
85	Genetics of 35 blood and urine biomarkers in the UK Biobank. <i>Nature Genetics</i> , 2021 , 53, 185-194	36.3	78
84	An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. <i>Nature Aging</i> , 2021 , 1, 598-615		36
83	Best Subset, Forward Stepwise or Lasso? Analysis and Recommendations Based on Extensive Comparisons. <i>Statistical Science</i> , 2020 , 35,	2.4	16
82	A fast and scalable framework for large-scale and ultrahigh-dimensional sparse regression with application to the UK Biobank. <i>PLoS Genetics</i> , 2020 , 16, e1009141	6	22
81	Fast Lasso method for large-scale and ultrahigh-dimensional Cox model with applications to UK Biobank. <i>Biostatistics</i> , 2020 ,	3.7	7
80	CAUSAL INTERPRETATIONS OF BLACK-BOX MODELS. <i>Journal of Business and Economic Statistics</i> , 2019 , 2019,	3.8	87
79	Nuclear penalized multinomial regression with an application to predicting at bat outcomes in baseball. <i>Statistical Modelling</i> , 2018 , 18, 388-410	0.7	4
78	Sparse EEG/MEG source estimation via a group lasso. <i>PLoS ONE</i> , 2017 , 12, e0176835	3.7	7
77	ZeitZeiger: supervised learning for high-dimensional data from an oscillatory system. <i>Nucleic Acids Research</i> , 2016 , 44, e80	20.1	47
76	Point process models for presence-only analysis. <i>Methods in Ecology and Evolution</i> , 2015 , 6, 366-379	7.7	211
75	Learning interactions via hierarchical group-lasso regularization. <i>Journal of Computational and Graphical Statistics</i> , 2015 , 24, 627-654	1.4	102
74	Bias correction in species distribution models: pooling survey and collection data for multiple species. <i>Methods in Ecology and Evolution</i> , 2015 , 6, 424-438	7.7	225
73	LOCAL CASE-CONTROL SAMPLING: EFFICIENT SUBSAMPLING IN IMBALANCED DATA SETS. <i>Annals of Statistics</i> , 2014 , 42, 1693-1724	3.2	41
72	Generalized Additive Models 2014 ,		21
71	A Sparse-Group Lasso. <i>Journal of Computational and Graphical Statistics</i> , 2013 , 22, 231-245	1.4	618

(2008-2013)

70	Inference from presence-only data; the ongoing controversy. <i>Ecography</i> , 2013 , 36, 864-867	6.5	139
69	Finite-Sample Equivalence in Statistical Models for Presence-Only Data. <i>Annals of Applied Statistics</i> , 2013 , 7, 1917-1939	2.1	132
68	Strong rules for discarding predictors in lasso-type problems. <i>Journal of the Royal Statistical Society Series B: Statistical Methodology</i> , 2012 , 74, 245-266	3.9	254
67	The graphical lasso: New insights and alternatives. <i>Electronic Journal of Statistics</i> , 2012 , 6, 2125-2149	1.2	124
66	Exact Covariance Thresholding into Connected Components for Large-Scale Graphical Lasso. Journal of Machine Learning Research, 2012 , 13, 781-794	28.6	59
65	Sparse Discriminant Analysis. <i>Technometrics</i> , 2011 , 53, 406-413	1.4	337
64	A fused lasso latent feature model for analyzing multi-sample aCGH data. <i>Biostatistics</i> , 2011 , 12, 776-91	3.7	38
63	A statistical explanation of MaxEnt for ecologists. <i>Diversity and Distributions</i> , 2011 , 17, 43-57	5	3194
62	: Coordinate Descent With Nonconvex Penalties. <i>Journal of the American Statistical Association</i> , 2011 , 106, 1125-1138	2.8	218
61	Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent. <i>Journal of Statistical Software</i> , 2011 , 39, 1-13	7.3	826
60	Regularization Paths for Generalized Linear Models via Coordinate Descent. <i>Journal of Statistical Software</i> , 2010 , 33, 1-22	7.3	3855
59	Regularization Paths for Generalized Linear Models via Coordinate Descent. <i>Journal of Statistical Software</i> , 2010 , 33,	7.3	6603
58	Genome-wide association analysis by lasso penalized logistic regression. <i>Bioinformatics</i> , 2009 , 25, 714-2	17.2	504
57	Presence-only data and the em algorithm. <i>Biometrics</i> , 2009 , 65, 554-63	1.8	161
56	The Elements of Statistical Learning. Springer Series in Statistics, 2009,	0.3	9918
55	A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. <i>Biostatistics</i> , 2009 , 10, 515-34	3.7	839
54	Risk estimation of distant metastasis in node-negative, estrogen receptor-positive breast cancer patients using an RT-PCR based prognostic expression signature. <i>BMC Cancer</i> , 2008 , 8, 339	4.8	43
53	Combining biological gene expression signatures in predicting outcome in breast cancer: An alternative to supervised classification. <i>European Journal of Cancer</i> , 2008 , 44, 2319-29	7.5	18

52	Radiation-induced gene expression in human subcutaneous fibroblasts is predictive of radiation-induced fibrosis. <i>Radiotherapy and Oncology</i> , 2008 , 86, 314-20	5.3	65
51	Sparse inverse covariance estimation with the graphical lasso. <i>Biostatistics</i> , 2008 , 9, 432-41	3.7	2705
50	Penalized logistic regression for detecting gene interactions. <i>Biostatistics</i> , 2008 , 9, 30-50	3.7	261
49	Novel methods for the design and evaluation of marine protected areas in offshore waters. <i>Conservation Letters</i> , 2008 , 1, 91-102	6.9	133
48	Preconditioning For feature selection and regression in high-dimensional problems. <i>Annals of Statistics</i> , 2008 , 36,	3.2	64
47	NEW MULTICATEGORY BOOSTING ALGORITHMS BASED ON MULTICATEGORY FISHER-CONSISTENT LOSSES. <i>Annals of Applied Statistics</i> , 2008 , 2, 1290-1306	2.1	54
46	Pathwise coordinate optimization. Annals of Applied Statistics, 2007, 1,	2.1	1022
45	L1-regularization path algorithm for generalized linear models. <i>Journal of the Royal Statistical Society Series B: Statistical Methodology</i> , 2007 , 69, 659-677	3.9	457
44	Gene expression programs of human smooth muscle cells: tissue-specific differentiation and prognostic significance in breast cancers. <i>PLoS Genetics</i> , 2007 , 3, 1770-84	6	48
43	Regularized linear discriminant analysis and its application in microarrays. <i>Biostatistics</i> , 2007 , 8, 86-100	3.7	370
42	Averaged gene expressions for regression. <i>Biostatistics</i> , 2007 , 8, 212-27	3.7	101
41	On the 🛘 egrees of freedom 🖟 the lasso. Annals of Statistics, 2007 , 35, 2173	3.2	500
40	Characterization of heterotypic interaction effects in vitro to deconvolute global gene expression profiles in cancer. <i>Genome Biology</i> , 2007 , 8, R191	18.3	65
39	Sparse Principal Component Analysis. <i>Journal of Computational and Graphical Statistics</i> , 2006 , 15, 265-2	8 <u>6</u> .4	1510
38	Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers. <i>PLoS Medicine</i> , 2006 , 3, e47	11.6	476
37	Making better biogeographical predictions of species distributions. <i>Journal of Applied Ecology</i> , 2006 , 43, 386-392	5.8	359
36	Prediction by Supervised Principal Components. <i>Journal of the American Statistical Association</i> , 2006 , 101, 119-137	2.8	415
35	Regularization and variable selection via the elastic net. <i>Journal of the Royal Statistical Society Series B: Statistical Methodology</i> , 2005 , 67, 301-320	3.9	8544

(1995-2005)

34	Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 3738-43	11.5	823
33	Least angle regression. <i>Annals of Statistics</i> , 2004 , 32, 407	3.2	5029
32	Classification of gene microarrays by penalized logistic regression. <i>Biostatistics</i> , 2004 , 5, 427-43	3.7	66
31	Gene expression patterns in ovarian carcinomas. <i>Molecular Biology of the Cell</i> , 2003 , 14, 4376-86	3.5	273
30	Class Prediction by Nearest Shrunken Centroids, with Applications to DNA Microarrays. <i>Statistical Science</i> , 2003 , 18, 104	2.4	252
29	Repeated observation of breast tumor subtypes in independent gene expression data sets. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 8418-23	11.5	4262
28	Generalized linear and generalized additive models in studies of species distributions: setting the scene. <i>Ecological Modelling</i> , 2002 , 157, 89-100	3	1332
27	Support Vector Machines, Kernel Logistic Regression and Boosting. <i>Lecture Notes in Computer Science</i> , 2002 , 16-26	0.9	6
26	Diagnosis of multiple cancer types by shrunken centroids of gene expression. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 6567-72	11.5	2252
25	The Elements of Statistical Learning. Springer Series in Statistics, 2001,	0.3	6424
24	Supervised harvesting of expression trees. <i>Genome Biology</i> , 2001 , 2, RESEARCH0003	18.3	113
23	Bayesian backfitting (with comments and a rejoinder by the authors. <i>Statistical Science</i> , 2000 , 15, 196	2.4	74
22	Additive logistic regression: a statistical view of boosting (With discussion and a rejoinder by the authors). <i>Annals of Statistics</i> , 2000 , 28, 337	3.2	3535
21	Metrics and models for handwritten character recognition. Statistical Science, 1998, 13, 54	2.4	52
20	Classification by pairwise coupling. <i>Annals of Statistics</i> , 1998 , 26, 451	3.2	640
19	Metrics and Models for Handwritten Character Recognition 1997 , 203-219		4
18	Discriminant Analysis by Gaussian Mixtures. <i>Journal of the Royal Statistical Society Series B: Methodological</i> , 1996 , 58, 155-176		103
17	Penalized Discriminant Analysis. <i>Annals of Statistics</i> , 1995 , 23, 73	3.2	490

16	Flexible Discriminant Analysis by Optimal Scoring. <i>Journal of the American Statistical Association</i> , 1994 , 89, 1255-1270	2.8	392
15	Varying-Coefficient Models. <i>Journal of the Royal Statistical Society Series B: Methodological</i> , 1993 , 55, 757-779		255
14	3-D curve matching using splines. <i>Journal of Field Robotics</i> , 1991 , 8, 723-743		27
13	Principal Curves. Journal of the American Statistical Association, 1989, 84, 502-516	2.8	818
12	Linear Smoothers and Additive Models. <i>Annals of Statistics</i> , 1989 , 17, 453	3.2	559
11	Rejoinder: Linear Smoothers and Additive Models. <i>Annals of Statistics</i> , 1989 , 17, 543	3.2	11
10	The Geometric Interpretation of Correspondence Analysis. <i>Journal of the American Statistical Association</i> , 1987 , 82, 437-447	2.8	242
9	Local Likelihood Estimation. <i>Journal of the American Statistical Association</i> , 1987 , 82, 559-567	2.8	276
8	Generalized Additive Models: Some Applications. <i>Journal of the American Statistical Association</i> , 1987 , 82, 371-386	2.8	365
7	Generalized Additive Models. <i>Statistical Science</i> , 1986 , 1, 297	2.4	1531
6	Discussion: Projection Pursuit. <i>Annals of Statistics</i> , 1985 , 13, 502	3.2	7
5	Principal Curves and Surfaces 1984,		74
4	Generalized Additive Models: Some Applications		59
3	The Geometric Interpretation of Correspondence Analysis		53
2	Local Likelihood Estimation		91
1	Flexible Discriminant Analysis by Optimal Scoring		122