Hideyuki Okano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1188572/publications.pdf

Version: 2024-02-01

2203 4750 39,449 589 99 citations h-index g-index papers

629 629 629 39834 docs citations times ranked citing authors all docs

169

#	Article	IF	Citations
1	A new approach to analysis of intracellular proteins and subcellular localization using cellprofiler and imageJ in combination. Methods, 2022, 203, 233-241.	1.9	5
2	Modulation by DREADD reveals the therapeutic effect of human iPSC-derived neuronal activity on functional recovery after spinal cord injury. Stem Cell Reports, 2022, 17, 127-142.	2.3	29
3	Homologous Recombination-Enhancing Factors Identified by Comparative Transcriptomic Analyses of Pluripotent Stem Cell of Human and Common Marmoset. Cells, 2022, 11, 360.	1.8	2
4	Exploration of the role of the subodontoblastic layer in odontoblast-like cell differentiation after tooth drilling using Nestin-enhanced green fluorescent protein transgenic mice. Journal of Oral Biosciences, 2022, 64, 77-84.	0.8	3
5	Otic Organoids Containing Spiral Ganglion Neuron-like Cells Derived from Human-induced Pluripotent Stem Cells as a Model of Drug-induced Neuropathy. Stem Cells Translational Medicine, 2022, 11, 282-296.	1.6	13
6	iPSC-based disease modeling and drug discovery in cardinal neurodegenerative disorders. Cell Stem Cell, 2022, 29, 189-208.	5.2	71
7	Diffusion magnetic resonance tractography-based evaluation of commissural fiber abnormalities in a heparan sulfate endosulfatase-deficient mouse brain. Magnetic Resonance Imaging, 2022, 88, 123-123.	1.0	O
8	Cortical neural dynamics unveil the rhythm of natural visual behavior in marmosets. Communications Biology, 2022, 5, 108.	2.0	12
9	Correlation Between Genetic Abnormalities in Induced Pluripotent Stem Cell-Derivatives and Abnormal Tissue Formation in Tumorigenicity Tests. Stem Cells Translational Medicine, 2022, 11 , 527-538.	1.6	8
10	Regenerative Rehabilitation and Stem Cell Therapy Targeting Chronic Spinal Cord Injury: A Review of Preclinical Studies. Cells, 2022, 11, 685.	1.8	18
11	Administration of C5a Receptor Antagonist Improves the Efficacy of Human Induced Pluripotent Stem Cell–Derived Neural Stem/Progenitor Cell Transplantation in the Acute Phase of Spinal Cord Injury. Journal of Neurotrauma, 2022, 39, 667-682.	1.7	5
12	Functional reorganization of locomotor kinematic synergies reflects the neuropathology in a mouse model of spinal cord injury. Neuroscience Research, 2022, 177, 78-84.	1.0	0
13	The GADD45G/p38 MAPK/CDC25B signaling pathway enhances neurite outgrowth by promoting microtubule polymerization. IScience, 2022, 25, 104089.	1.9	5
14	Glycosaminoglycans promote osteogenesis from human induced pluripotent stem cells via neural crest induction. Biochemical and Biophysical Research Communications, 2022, 603, 49-56.	1.0	1
15	Preserved intersegmental coordination during locomotion after cervical spinal cord injury in common marmosets. Behavioural Brain Research, 2022, 425, 113816.	1.2	1
16	Coupling of angiogenesis and odontogenesis orchestrates tooth mineralization in mice. Journal of Experimental Medicine, 2022, 219, .	4.2	12
17	The Anterior Eye Chamber as a Visible Medium for In Vivo Tumorigenicity Tests. Stem Cells Translational Medicine, 2022, 11, 841-849.	1.6	4
18	Treadmill Training for Common Marmoset to Strengthen Corticospinal Connections After Thoracic Contusion Spinal Cord Injury. Frontiers in Cellular Neuroscience, 2022, 16, 858562.	1.8	1

#	Article	IF	CITATIONS
19	Effects of Epigenetic Modification of PGC-1α by a Chemical Chaperon on Mitochondria Biogenesis and Visual Function in Retinitis Pigmentosa. Cells, 2022, 11, 1497.	1.8	7
20	Early development of the cochlea of the common marmoset, a non-human primate model. Neural Development, 2022, 17, 6.	1.1	6
21	Critical roles of FGF, RA, and WNT signalling in the development of the human otic placode and subsequent lineages in a dish. Regenerative Therapy, 2022, 20, 165-186.	1.4	4
22	TPT1 Supports Proliferation of Neural Stem/Progenitor Cells and Brain Tumor Initiating Cells Regulated by Macrophage Migration Inhibitory Factor (MIF). Neurochemical Research, 2022, 47, 2741-2756.	1.6	3
23	Pathogenic Mutation of TDP-43 Impairs RNA Processing in a Cell Type-Specific Manner: Implications for the Pathogenesis of ALS/FTLD. ENeuro, 2022, 9, ENEURO.0061-22.2022.	0.9	12
24	Single transcription factor efficiently leads human induced pluripotent stem cells to functional microglia. Inflammation and Regeneration, 2022, 42, .	1.5	10
25	Stepâ€byâ€step protocols for nonâ€viral derivation of transgeneâ€free induced pluripotent stem cells from somatic fibroblasts of multiple mammalian species. Development Growth and Differentiation, 2022, 64, 325-341.	0.6	2
26	FZD5 regulates cellular senescence in human mesenchymal stem/stromal cells. Stem Cells, 2021, 39, 318-330.	1.4	19
27	The common marmoset as suitable nonhuman alternative for the analysis of primate cochlear development. FEBS Journal, 2021, 288, 325-353.	2.2	12
28	Modeling neurodevelopment in a dish with pluripotent stem cells. Development Growth and Differentiation, 2021, 63, 18-25.	0.6	12
29	A robust culture system to generate neural progenitors with gliogenic competence from clinically relevant induced pluripotent stem cells for treatment of spinal cord injury. Stem Cells Translational Medicine, 2021, 10, 398-413.	1.6	22
30	Alphaâ€synuclein dynamics in induced pluripotent stem cellâ€derived dopaminergic neurons from a Parkinson's disease patient (<i>PARK4</i>) with <i>SNCA</i> triplication. FEBS Open Bio, 2021, 11, 354-366.	1.0	7
31	Current Status of and Perspectives on the Application of Marmosets in Neurobiology. Annual Review of Neuroscience, 2021, 44, 27-48.	5.0	59
32	Recent progress in the research of suicide gene therapy for malignant glioma. Neurosurgical Review, 2021, 44, 29-49.	1.2	27
33	DGCR8-dependent efficient pri-miRNA processing of human pri-miR-9-2. Journal of Biological Chemistry, 2021, 296, 100409.	1.6	14
34	Flexible and Accurate Substrate Processing with Distinct Presenilin/ \hat{l}^3 -Secretases in Human Cortical Neurons. ENeuro, 2021, 8, ENEURO.0500-20.2021.	0.9	10
35	Generation of region-specific and high-purity neurons from human feeder-free iPSCs. Neuroscience Letters, 2021, 746, 135676.	1.0	10
36	Establishment of an in vitro model for analyzing mitochondrial ultrastructure in PRKN-mutated patient iPSC-derived dopaminergic neurons. Molecular Brain, 2021, 14, 58.	1.3	8

#	Article	IF	Citations
37	Umbilical artery tissue contains p75 neurotrophin receptor-positive pericyte-like cells that possess neurosphere formation capacity and neurogenic differentiation potential. Regenerative Therapy, 2021, 16, 1-11.	1.4	О
38	Flexible annotation atlas of the mouse brain: combining and dividing brain structures of the Allen Brain Atlas while maintaining anatomical hierarchy. Scientific Reports, 2021, 11, 6234.	1.6	8
39	\hat{l}^2 -catenin-promoted cholesterol metabolism protects against cellular senescence in naked mole-rat cells. Communications Biology, 2021, 4, 357.	2.0	12
40	Generation and validation of a common marmoset embryonic stem cell line ActiCre-B1 that ubiquitously expresses a tamoxifen-inducible Cre-driver. Stem Cell Research, 2021, 51, 102164.	0.3	1
41	Association among extracellular superoxide dismutase genotype, plasma concentration, and comorbidity in the very old and centenarians. Scientific Reports, 2021, 11, 8539.	1.6	10
42	Non-viral Induction of Transgene-free iPSCs from Somatic Fibroblasts of Multiple Mammalian Species. Stem Cell Reports, 2021, 16, 754-770.	2.3	30
43	DCTN1 Binds to TDP-43 and Regulates TDP-43 Aggregation. International Journal of Molecular Sciences, 2021, 22, 3985.	1.8	19
44	Establishing an induced pluripotent stem cell line from neonatal common marmoset fibroblasts by an all-in-one episomal vector approach. Stem Cell Research, 2021, 53, 102380.	0.3	2
45	Establishment of an induced pluripotent stem cell line from a female domestic ferret (Mustela) Tj ETQq1 1 0.78	431 <u>4 r</u> gBT	/Oyerlock 10
46	Generation of a common marmoset embryonic stem cell line CMES40-OC harboring a POU5F1 (OCT4)-2A-mCerulean3 knock-in reporter allele. Stem Cell Research, 2021, 53, 102308.	0.3	2
47	Impaired neuronal activity and differential gene expression in <i>STXBP1</i> encephalopathy patient iPSC-derived GABAergic neurons. Human Molecular Genetics, 2021, 30, 1337-1348.	1.4	11
48	Non-viral derivation of a transgene-free induced pluripotent stem cell line from a male beagle dog. Stem Cell Research, 2021, 53, 102375.	0.3	8
49	MeCP2 controls neural stem cell fate specification through miR-199a-mediated inhibition of BMP-Smad signaling. Cell Reports, 2021, 35, 109124.	2.9	22
50	Neurological pathogenesis of SARS-CoV-2 (COVID-19): from virological features to clinical symptoms. Inflammation and Regeneration, 2021, 41, 15.	1.5	11
51	Taurine rescues mitochondria-related metabolic impairments in the patient-derived induced pluripotent stem cells and epithelial-mesenchymal transition in the retinal pigment epithelium. Redox Biology, 2021, 41, 101921.	3.9	29
52	Selective suppression of polyglutamine-expanded protein by lipid nanoparticle-delivered siRNA targeting CAG expansions in the mouse CNS. Molecular Therapy - Nucleic Acids, 2021, 24, 1-10.	2.3	14
53	Reduced PHOX2B stability causes axonal growth impairment in motor neurons with TARDBP mutations. Stem Cell Reports, 2021, 16, 1527-1541.	2.3	10
54	Identification of hub molecules of FUS-ALS by Bayesian gene regulatory network analysis of iPSC model: iBRN. Neurobiology of Disease, 2021, 155, 105364.	2.1	7

#	Article	IF	CITATIONS
55	Optical manipulation of local cerebral blood flow in the deep brain of freely moving mice. Cell Reports, 2021, 36, 109427.	2.9	7
56	Dynamic Spatiotemporal Expression Changes in Connexins of the Developing Primate's Cochlea. Genes, 2021, 12, 1082.	1.0	9
57	Future Perspective for Spinal Cord Regeneration. The Japanese Journal of Rehabilitation Medicine, 2021, 58, 787-794.	0.0	O
58	Human iPS Cell-Derived Cell Aggregates Exhibited Dermal Papilla Cell Properties in in vitro Three-Dimensional Assemblage Mimicking Hair Follicle Structures. Frontiers in Cell and Developmental Biology, 2021, 9, 590333.	1.8	9
59	Involvement of ferroptosis in human motor neuron cell death. Biochemical and Biophysical Research Communications, 2021, 566, 24-29.	1.0	21
60	Comparison of Drug Availability in the Inner Ear After Oral, Transtympanic, and Combined Administration. Frontiers in Neurology, 2021, 12, 641593.	1.1	3
61	Transplantation of iPSC-derived corneal endothelial substitutes in a monkey corneal edema model. Stem Cell Research, 2021, 55, 102497.	0.3	17
62	Markerless analysis of hindlimb kinematics in spinal cord-injured mice through deep learning. Neuroscience Research, 2021, , .	1.0	3
63	Neuronal development in the cochlea of a nonhuman primate model, the common marmoset. Developmental Neurobiology, 2021, 81, 905-938.	1.5	9
64	Generation of a control human induced pluripotent stem cell line using the defective and persistent Sendai virus vector system. Stem Cell Research, 2021, 56, 102549.	0.3	4
65	Developmental dysregulation of excitatory-to-inhibitory GABA-polarity switch may underlie schizophrenia pathology: A monozygotic-twin discordant case analysis in human iPS cell-derived neurons. Neurochemistry International, 2021, 150, 105179.	1.9	9
66	NEAT1 lncRNA and amyotrophic lateral sclerosis. Neurochemistry International, 2021, 150, 105175.	1.9	12
67	Treadmill training based on the overload principle promotes locomotor recovery in a mouse model of chronic spinal cord injury. Experimental Neurology, 2021, 345, 113834.	2.0	22
68	Modeling human congenital disorders with neural crest developmental defects using patient-derived induced pluripotent stem cells. Regenerative Therapy, 2021, 18, 275-280.	1.4	4
69	First-in-human clinical trial of transplantation of iPSC-derived NS/PCs in subacute complete spinal cord injury: Study protocol. Regenerative Therapy, 2021, 18, 321-333.	1.4	74
70	Direct Neuronal Reprogramming of Common Marmoset Fibroblasts by ASCL1, microRNA-9/9*, and microRNA-124 Overexpression. Cells, 2021, 10, 6.	1.8	8
71	LOTUS overexpression via exÂvivo gene transduction further promotes recovery of motor function following human iPSC-NS/PC transplantation for contusive spinal cord injury. Stem Cell Reports, 2021, 16, 2703-2717.	2.3	14
72	Mechanisms of Stem Cell Therapy in Spinal Cord Injuries. Cells, 2021, 10, 2676.	1.8	24

#	Article	IF	Citations
73	Primary cilia safeguard cortical neurons in neonatal mouse forebrain from environmental stress-induced dendritic degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2012482118.	3.3	14
74	Utilization of Human Induced Pluripotent Stem Cells-Derived In vitro Models for the Future Study of Sex Differences in Alzheimer's Disease. Frontiers in Aging Neuroscience, 2021, 13, 768948.	1.7	7
75	Current progress of rehabilitative strategies in stem cell therapy for spinal cord injury: a review. Npj Regenerative Medicine, 2021, 6, 81.	2.5	20
76	Long-term selective stimulation of transplanted neural stem/progenitor cells for spinal cord injury improves locomotor function. Cell Reports, 2021, 37, 110019.	2.9	34
77	Amyloid \hat{I}^2 (A \hat{I}^2) ELISA of Human iPSC-Derived Neuronal Cultures. Methods in Molecular Biology, 2021, , 1.	0.4	0
78	Evaluating the efficacy of small molecules for neural differentiation of common marmoset ESCs and iPSCs. Neuroscience Research, 2020, 155, 1-11.	1.0	4
79	A combinational treatment of carotenoids decreases \hat{A}^2 secretion in human neurons via \hat{I}^2 -secretase inhibition. Neuroscience Research, 2020, 158, 47-55.	1.0	7
80	Common functional networks in the mouse brain revealed by multi-centre resting-state fMRI analysis. NeuroImage, 2020, 205, 116278.	2.1	151
81	Comparison of inner ear drug availability of combined treatment with systemic or local drug injections alone. Neuroscience Research, 2020, 155, 27-33.	1.0	6
82	In vivo monitoring of remnant undifferentiated neural cells following human induced pluripotent stem cell-derived neural stem/progenitor cells transplantation. Stem Cells Translational Medicine, 2020, 9, 465-477.	1.6	24
83	Polarization of Reactive Astrocytes in Response to Spinal Cord Injury is Enhanced by M2 Macrophage–Mediated Activation of Wnt/β-Catenin Pathway. Molecular Neurobiology, 2020, 57, 1847-1862.	1.9	16
84	Distribution of tight junctions in the primate cochlear lateral wall. Neuroscience Letters, 2020, 717, 134686.	1.0	5
85	Measurement of baseline locomotion and other behavioral traits in a common marmoset model of Parkinson's disease established by a single administration regimen of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: providing reference data for efficacious preclinical evaluations. Behavioural Pharmacology, 2020, 31, 45-60.	0.8	3
86	Isolation and characterization of neural crest-like progenitor cells in human umbilical cord blood. Regenerative Therapy, 2020, 15, 53-63.	1.4	4
87	Generation of an ALS human iPSC line KEIOi001-A from peripheral blood of a Charcot disease-affected patient carrying TARDBP p.N345K heterozygous SNP mutation. Stem Cell Research, 2020, 47, 101896.	0.3	5
88	Lowâ€dose rapamycinâ€induced autophagy in cochlear outer sulcus cells. Laryngoscope Investigative Otolaryngology, 2020, 5, 520-528.	0.6	6
89	Chd8 mutation in oligodendrocytes alters microstructure and functional connectivity in the mouse brain. Molecular Brain, 2020, 13, 160.	1.3	10
90	Generation of gene-corrected iPSCs line (KEIUi001-A) from a PARK8 patient iPSCs with familial Parkinson's disease carrying the I2020T mutation in LRRK2. Stem Cell Research, 2020, 49, 102073.	0.3	3

#	Article	IF	Citations
91	Characterization of brown adipose tissue thermogenesis in the naked mole-rat (Heterocephalus) Tj ETQq1 1 0.784	∤314 rgBT	/Overlock
92	Associations of cardiovascular biomarkers and plasma albumin with exceptional survival to the highest ages. Nature Communications, 2020, 11, 3820.	5.8	58
93	Senescenceâ€associated secretory phenotype promotes chronic ocular graftâ€vsâ€host disease in mice and humans. FASEB Journal, 2020, 34, 10778-10800.	0.2	26
94	Regenerative therapy for spinal cord injury using iPSC technology. Inflammation and Regeneration, 2020, 40, 40.	1.5	31
95	Cell therapy for spinal cord injury by using human iPSC-derived region-specific neural progenitor cells. Molecular Brain, 2020, 13, 120.	1.3	51
96	New trends in cellular therapy. Development (Cambridge), 2020, 147, .	1.2	24
97	The liver–brain–gut neural arc maintains the Treg cell niche in the gut. Nature, 2020, 585, 591-596.	13.7	126
98	Expression of ACE2 and a viral virulence-regulating factor CCN family member 1 in human iPSC-derived neural cells: implications for COVID-19-related CNS disorders. Inflammation and Regeneration, 2020, 40, 32.	1.5	17
99	Opportunities and limitations of genetically modified nonhuman primate models for neuroscience research. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24022-24031.	3.3	64
100	Human Astrocytes Model Derived from Induced Pluripotent Stem Cells. Cells, 2020, 9, 2680.	1.8	33
101	The polymicrogyria-associated GPR56 promoter preferentially drives gene expression in developing GABAergic neurons in common marmosets. Scientific Reports, 2020, 10, 21516.	1.6	10
102	Renin–angiotensin system impairs macrophage lipid metabolism to promote age-related macular degeneration in mouse models. Communications Biology, 2020, 3, 767.	2.0	14
103	Optimization and validation of diffusion MRI-based fiber tracking with neural tracer data as a reference. Scientific Reports, 2020, 10, 21285.	1.6	15
104	Brain Transcriptome Analysis Links Deficiencies of Stress-Responsive Proteins to the Pathomechanism of Kii ALS/PDC. Antioxidants, 2020, 9, 423.	2.2	7
105	Quantitative analysis of intervertebral disc degeneration using Qâ€space imaging in a rat model. Journal of Orthopaedic Research, 2020, 38, 2220-2229.	1.2	7
106	Phase I/II Study of Intrathecal Administration of Recombinant Human Hepatocyte Growth Factor in Patients with Acute Spinal Cord Injury: A Double-Blind, Randomized Clinical Trial of Safety and Efficacy. Journal of Neurotrauma, 2020, 37, 1752-1758.	1.7	27
107	The NanoZoomer artificial intelligence connectomics pipeline for tracer injection studies of the marmoset brain. Brain Structure and Function, 2020, 225, 1225-1243.	1.2	10
108	Current understanding of adult neurogenesis in the mammalian brain: how does adult neurogenesis decrease with age?. Inflammation and Regeneration, 2020, 40, 10.	1.5	30

#	Article	IF	CITATIONS
109	Human-specific <i>ARHGAP11B</i> increases size and folding of primate neocortex in the fetal marmoset. Science, 2020, 369, 546-550.	6.0	127
110	An NMF-based approach to discover overlooked differentially expressed gene regions from single-cell RNA-seq data. NAR Genomics and Bioinformatics, 2020, 2, Iqz020.	1.5	5
111	Primed to Naive-Like Conversion of the Common Marmoset Embryonic Stem Cells. Stem Cells and Development, 2020, 29, 761-773.	1.1	14
112	Generation of a male common marmoset embryonic stem cell line DSY127-BV8VT1 carrying double reporters specific for the germ cell linage using the CRISPR-Cas9 and PiggyBac transposase systems. Stem Cell Research, 2020, 44, 101740.	0.3	9
113	An improved de novo genome assembly of the common marmoset genome yields improved contiguity and increased mapping rates of sequence data. BMC Genomics, 2020, 21, 243.	1.2	9
114	Steps towards COVID-19 suppression. Inflammation and Regeneration, 2020, 40, 13.	1.5	3
115	Reprogramming of chimpanzee fibroblasts into a multipotent cancerous but not fully pluripotent state by transducing iPSC factors in 2i/LIF culture. Differentiation, 2020, 112, 67-76.	1.0	6
116	Pathogenic POGZ mutation causes impaired cortical development and reversible autism-like phenotypes. Nature Communications, 2020, $11,859$.	5.8	59
117	Unveiling synapse pathology in spinal bulbar muscular atrophy by genome-wide transcriptome analysis of purified motor neurons derived from disease specific iPSCs. Molecular Brain, 2020, 13, 18.	1.3	19
118	Gene Therapy Using Neural Stem/Progenitor Cells Derived from Human Induced Pluripotent Stem Cells: Visualization of Migration and Bystander Killing Effect. Human Gene Therapy, 2020, 31, 352-366.	1.4	17
119	miRNA-Based Rapid Differentiation of Purified Neurons from hPSCs Advancestowards Quick Screening for Neuronal Disease Phenotypes In Vitro. Cells, 2020, 9, 532.	1.8	27
120	Awake functional MRI detects neural circuit dysfunction in a mouse model of autism. Science Advances, 2020, 6, eaav4520.	4.7	62
121	International Brain Initiative: An Innovative Framework for Coordinated Global Brain Research Efforts. Neuron, 2020, 105, 212-216.	3.8	50
122	Ropinirole, a New ALS Drug Candidate Developed Using iPSCs. Trends in Pharmacological Sciences, 2020, 41, 99-109.	4.0	63
123	Translational derepression of Elavl4Âisoforms at their alternative 5′ UTRs determines neuronal development. Nature Communications, 2020, 11, 1674.	5.8	40
124	Analysis of the nucleocytoplasmic shuttling RNA-binding protein HNRNPU using optimized HITS-CLIP method. PLoS ONE, 2020, 15, e0231450.	1.1	16
125	A Cell-Based High-Throughput Screening Identified Two Compounds that Enhance PINK1-Parkin Signaling. IScience, 2020, 23, 101048.	1.9	21
126	Controlling gene activation by enhancers through a drug-inducible topological insulator. ELife, 2020, 9, .	2.8	8

#	Article	IF	Citations
127	Direct induction of neural cells from somatic cells. , 2020, , 179-185.		O
128	Are We There Yet? How and When Specific Biotechnologies Will Improve Human Health. Biotechnology Journal, 2019, 14, e1800195.	1.8	7
129	PATâ€"Probabilistic Axon Tracking for Densely Labeled Neurons in Large 3-D Micrographs. IEEE Transactions on Medical Imaging, 2019, 38, 69-78.	5.4	16
130	In Utero Amniotic Fluid Stem Cell Therapy Protects Against Myelomeningocele via Spinal Cord Coverage and Hepatocyte Growth Factor Secretion. Stem Cells Translational Medicine, 2019, 8, 1170-1179.	1.6	29
131	Generation of a human iPS cell line (CGMH.SLC26A4919-2) from a Pendred syndrome patient carrying SLC26A4 c.919-2A>G splice-site mutation. Stem Cell Research, 2019, 40, 101524.	0.3	8
132	Ropinirole hydrochloride remedy for amyotrophic lateral sclerosis – Protocol for a randomized, double-blind, placebo-controlled, single-center, and open-label continuation phase I/IIa clinical trial (ROPALS trial). Regenerative Therapy, 2019, 11, 143-166.	1.4	33
133	The adeno-associated virus rh10 vector is an effective gene transfer system for chronic spinal cord injury. Scientific Reports, 2019, 9, 9844.	1.6	12
134	Dual usage of a stage-specific fluorescent reporter system based on a helper-dependent adenoviral vector to visualize osteogenic differentiation. Scientific Reports, 2019, 9, 9705.	1.6	3
135	Relation of koniocellular layers of dorsal lateral geniculate to inferior pulvinar nuclei in common marmosets. European Journal of Neuroscience, 2019, 50, 4004-4017.	1.2	11
136	Cell therapy for spinal cord injury using induced pluripotent stem cells. Regenerative Therapy, 2019, 11, 75-80.	1.4	65
137	Aberrant axon branching via Fos-B dysregulation in FUS-ALS motor neurons. EBioMedicine, 2019, 45, 362-378.	2.7	49
138	Large-Area Fluorescence and Electron Microscopic Correlative Imaging With Multibeam Scanning Electron Microscopy. Frontiers in Neural Circuits, 2019, 13, 29.	1.4	22
139	Mutations in CHCHD2 cause α-synuclein aggregation. Human Molecular Genetics, 2019, 28, 3895-3911.	1.4	48
140	Developmental analyses of mouse embryos and adults using a non-overlapping tracing system for all three germ layers. Development (Cambridge), 2019, 146, .	1.2	7
141	Single-cell transcriptomics reveals expansion of cytotoxic CD4 T cells in supercentenarians. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24242-24251.	3.3	215
142	Excess hydrogen sulfide and polysulfides production underlies a schizophrenia pathophysiology. EMBO Molecular Medicine, 2019, 11, e10695.	3.3	47
143	atlasBREX: Automated template-derived brain extraction in animal MRI. Scientific Reports, 2019, 9, 12219.	1.6	21
144	A versatile toolbox for knock-in gene targeting based on the Multisite Gateway technology. PLoS ONE, 2019, 14, e0221164.	1.1	10

#	Article	IF	CITATIONS
145	Efficient generation of Knock-in/Knock-out marmoset embryo via CRISPR/Cas9 gene editing. Scientific Reports, 2019, 9, 12719.	1.6	42
146	Src inhibition attenuates polyglutamine-mediated neuromuscular degeneration in spinal and bulbar muscular atrophy. Nature Communications, 2019, 10, 4262.	5.8	13
147	Pathological Progression Induced by the Frontotemporal Dementia-Associated R406W Tau Mutation in Patient-Derived iPSCs. Stem Cell Reports, 2019, 13, 684-699.	2.3	46
148	Reduced expression of somatostatin in GABAergic interneurons derived from induced pluripotent stem cells of patients with parkin mutations. Molecular Brain, 2019, 12, 5.	1.3	19
149	Induced Pluripotent Stem Cells Reprogrammed with Three Inhibitors Show Accelerated Differentiation Potentials with High Levels of 2-Cell Stage Marker Expression. Stem Cell Reports, 2019, 12, 305-318.	2.3	10
150	Extracellular αâ€synuclein enters dopaminergic cells by modulating flotillinâ€1–assisted dopamine transporter endocytosis. FASEB Journal, 2019, 33, 10240-10256.	0.2	16
151	Tau isoform expression and phosphorylation in marmoset brains. Journal of Biological Chemistry, 2019, 294, 11433-11444.	1.6	27
152	Establishment of induced pluripotent stem cells from common marmoset fibroblasts by RNA-based reprogramming. Biochemical and Biophysical Research Communications, 2019, 515, 593-599.	1.0	17
153	Degradation of Extracellular Matrix by Matrix Metalloproteinase 2 Is Essential for the Establishment of the Blood-Brain Barrier in Drosophila. IScience, 2019, 16, 218-229.	1.9	18
154	Visualization of spatiotemporal dynamics of human glioma stem cell invasion. Molecular Brain, 2019, 12, 45.	1.3	20
155	Involvement of p38 in Age-Related Decline in Adult Neurogenesis viaÂModulation of Wnt Signaling. Stem Cell Reports, 2019, 12, 1313-1328.	2.3	37
156	Cell-specific overexpression of COMT in dopaminergic neurons of Parkinson's disease. Brain, 2019, 142, 1675-1689.	3.7	13
157	Chronic Implantation of Whole-cortical Electrocorticographic Array in the Common Marmoset. Journal of Visualized Experiments, 2019, , .	0.2	10
158	Correlative study using structural MRI and super-resolution microscopy to detect structural alterations induced by long-term optogenetic stimulation of striatal medium spiny neurons. Neurochemistry International, 2019, 125, 163-174.	1.9	18
159	Application of Hepatocyte Growth Factor for Acute Spinal Cord Injury: The Road from Basic Studies to Human Treatment. International Journal of Molecular Sciences, 2019, 20, 1054.	1.8	32
160	Noninvasive technique to evaluate the muscle fiber characteristics using q-space imaging. PLoS ONE, 2019, 14, e0214805.	1.1	14
161	Analysis of skeletal-muscle condition after excessive loading of the lower legs by sequential magnetic resonance imaging. Journal of Orthopaedic Science, 2019, 24, 873-880.	0.5	5
162	Semi-supervised deep learning of brain tissue segmentation. Neural Networks, 2019, 116, 25-34.	3.3	48

#	Article	IF	CITATIONS
163	Role of cyclooxygenase-2-mediated prostaglandin E2-prostaglandin E receptor 4 signaling in cardiac reprogramming. Nature Communications, 2019, 10, 674.	5.8	74
164	Comparative Principles for Next-Generation Neuroscience. Frontiers in Behavioral Neuroscience, 2019, 13, 12.	1.0	18
165	Robust and efficient knock-in in embryonic stem cells and early-stage embryos of the common marmoset using the CRISPR-Cas9 system. Scientific Reports, 2019, 9, 1528.	1.6	35
166	Increased Cytotoxicity of Herpes Simplex Virus Thymidine Kinase Expression in Human Induced Pluripotent Stem Cells. International Journal of Molecular Sciences, 2019, 20, 810.	1.8	20
167	Neuroethical Issues of the Brain/MINDS Project of Japan. Neuron, 2019, 101, 385-389.	3.8	14
168	MR Imaging Properties of <i>ex vivo</i> Common Marmoset Brain after Formaldehyde Fixation. Magnetic Resonance in Medical Sciences, 2019, 18, 253-259.	1.1	7
169	Estimating the concentration of therapeutic range using disease-specific iPS cells: Low-dose rapamycin therapy for Pendred syndrome. Regenerative Therapy, 2019, 10, 54-63.	1.4	17
170	Concise Review: Laying the Groundwork for a First-In-Human Study of an Induced Pluripotent Stem Cell-Based Intervention for Spinal Cord Injury. Stem Cells, 2019, 37, 6-13.	1.4	98
171	Unidirectional monosynaptic connections from auditory areas to the primary visual cortex in the marmoset monkey. Brain Structure and Function, 2019, 224, 111-131.	1.2	34
172	Neuroanatomy of the Marmoset. , 2019, , 43-62.		8
172 173	Neuroanatomy of the Marmoset., 2019, , 43-62. Selective Ablation of Tumorigenic Cells Following Human Induced Pluripotent Stem Cell-Derived Neural Stem/Progenitor Cell Transplantation in Spinal Cord Injury. Stem Cells Translational Medicine, 2019, 8, 260-270.	1.6	8
	Selective Ablation of Tumorigenic Cells Following Human Induced Pluripotent Stem Cell-Derived Neural Stem/Progenitor Cell Transplantation in Spinal Cord Injury. Stem Cells Translational Medicine,	1.6	
173	Selective Ablation of Tumorigenic Cells Following Human Induced Pluripotent Stem Cell-Derived Neural Stem/Progenitor Cell Transplantation in Spinal Cord Injury. Stem Cells Translational Medicine, 2019, 8, 260-270. <i>In Vitro</i> Modeling of the Bipolar Disorder and Schizophrenia Using Patient-Derived Induced Pluripotent Stem Cells with Copy Number Variations of <i>PCDH1</i> PCDH1 In Vitro In Vit		68
173 174	Selective Ablation of Tumorigenic Cells Following Human Induced Pluripotent Stem Cell-Derived Neural Stem/Progenitor Cell Transplantation in Spinal Cord Injury. Stem Cells Translational Medicine, 2019, 8, 260-270. <i>In Vitro / i > Modeling of the Bipolar Disorder and Schizophrenia Using Patient-Derived Induced Pluripotent Stem Cells with Copy Number Variations of i > PCDH1 < / i > 5 and i > RELN < / i > . ENeuro, 2019, 6, ENEURO.0403-18.2019. A high-throughput neurohistological pipeline for brain-wide mesoscale connectivity mapping of the</i>	0.9	68 54
173 174 175	Selective Ablation of Tumorigenic Cells Following Human Induced Pluripotent Stem Cell-Derived Neural Stem/Progenitor Cell Transplantation in Spinal Cord Injury. Stem Cells Translational Medicine, 2019, 8, 260-270. <i>In Vitro / i > Modeling of the Bipolar Disorder and Schizophrenia Using Patient-Derived Induced Pluripotent Stem Cells with Copy Number Variations of <i> PCDH1 < / i > 5 and <i> RELN < / i > . ENeuro, 2019, 6, ENEURO.0403-18.2019. A high-throughput neurohistological pipeline for brain-wide mesoscale connectivity mapping of the common marmoset. ELife, 2019, 8, . Significance of Regenerative Medicine and Rehabilitation for Spinal Cord Injury. The Japanese Journal</i></i></i>	0.9	68 54 51
173 174 175 176	Selective Ablation of Tumorigenic Cells Following Human Induced Pluripotent Stem Cell-Derived Neural Stem/Progenitor Cell Transplantation in Spinal Cord Injury. Stem Cells Translational Medicine, 2019, 8, 260-270. <i>In Vitro</i> Modeling of the Bipolar Disorder and Schizophrenia Using Patient-Derived Induced Pluripotent Stem Cells with Copy Number Variations of IPCDH1 PCDH1 Seneuro, 2019, 6, ENEURO.0403-18.2019. A high-throughput neurohistological pipeline for brain-wide mesoscale connectivity mapping of the common marmoset. ELife, 2019, 8, . Significance of Regenerative Medicine and Rehabilitation for Spinal Cord Injury. The Japanese Journal of Rehabilitation Medicine, 2019, 56, 706-710. Generation of D1-1 TALEN isogenic control cell line from Dravet syndrome patient iPSCs using	0.9 2.8 0.0	68 54 51 0
173 174 175 176	Selective Ablation of Tumorigenic Cells Following Human Induced Pluripotent Stem Cell-Derived Neural Stem/Progenitor Cell Transplantation in Spinal Cord Injury. Stem Cells Translational Medicine, 2019, 8, 260-270. <i>In Vitro / i > Modeling of the Bipolar Disorder and Schizophrenia Using Patient-Derived Induced Pluripotent Stem Cells with Copy Number Variations of <i>PCDH1 / i > 5 and <i> RELN </i> ENeuro, 2019, 6, ENEURO.0403-18.2019. A high-throughput neurohistological pipeline for brain-wide mesoscale connectivity mapping of the common marmoset. ELife, 2019, 8, . Significance of Regenerative Medicine and Rehabilitation for Spinal Cord Injury. The Japanese Journal of Rehabilitation Medicine, 2019, 56, 706-710. Generation of D1-1 TALEN isogenic control cell line from Dravet syndrome patient iPSCs using TALEN-mediated editing of the SCN1A gene. Stem Cell Research, 2018, 28, 100-104. Nestin expression is differently regulated between odontoblasts and the subodontoblastic layer in</i></i>	0.9 2.8 0.0	68 54 51 0

#	Article	IF	CITATIONS
181	Engraftment of Human Pluripotent Stem Cell-derived Progenitors in the Inner Ear of Prenatal Mice. Scientific Reports, 2018, 8, 1941.	1.6	23
182	Elavl3 is essential for the maintenance of Purkinje neuron axons. Scientific Reports, 2018, 8, 2722.	1.6	47
183	The Brain/MINDS 3D digital marmoset brain atlas. Scientific Data, 2018, 5, 180009.	2.4	68
184	Chromatin remodeler CHD7 regulates the stem cell identity of human neural progenitors. Genes and Development, 2018, 32, 165-180.	2.7	28
185	Japan Strengthens Regenerative Medicine Oversight. Cell Stem Cell, 2018, 22, 153-156.	5.2	20
186	Activation of ventral tegmental area dopaminergic neurons reverses pathological allodynia resulting from nerve injury or bone cancer. Molecular Pain, 2018, 14, 174480691875640.	1.0	57
187	Chemical decontamination of iPS cell-derived neural cell mixtures. Chemical Communications, 2018, 54, 1355-1358.	2.2	7
188	Down-regulation of ghrelin receptors on dopaminergic neurons in the substantia nigra contributes to Parkinson's disease-like motor dysfunction. Molecular Brain, 2018, 11, 6.	1.3	43
189	Semiquantitative Evaluation of Muscle Repair by Diffusion Tensor Imaging in Mice. JBMR Plus, 2018, 2, 227-234.	1.3	7
190	The power of synthetic biology for bioproduction, remediation and pollution control. EMBO Reports, 2018, 19, .	2.0	83
191	Quantitative temporal changes in DTI values coupled with histological properties in cuprizone-induced demyelination and remyelination. Neurochemistry International, 2018, 119, 151-158.	1.9	32
192	Expression pattern of EYA4 in the common marmoset (Callithrix jacchus) cochlea. Neuroscience Letters, 2018, 662, 185-188.	1.0	14
193	Digital gene atlas of neonate common marmoset brain. Neuroscience Research, 2018, 128, 1-13.	1.0	37
194	Parkin absence accelerates microtubule aging in dopaminergic neurons. Neurobiology of Aging, 2018, 61, 66-74.	1.5	43
195	iPSC-derived neural precursor cells: potential for cell transplantation therapy in spinal cord injury. Cellular and Molecular Life Sciences, 2018, 75, 989-1000.	2.4	64
196	Investigation of brain science and neurological/psychiatric disorders using genetically modified non-human primates. Current Opinion in Neurobiology, 2018, 50, 1-6.	2.0	36
197	STAT3: Down the R(h)oAd. Cytokine, 2018, 102, 149-150.	1.4	0
198	The Japan Monkey Centre Primates Brain Imaging Repository for comparative neuroscience: an archive of digital records including records for endangered species. Primates, 2018, 59, 553-570.	0.7	12

#	Article	IF	Citations
199	LOTUS Inhibits Neuronal Apoptosis and Promotes Tract Regeneration in Contusive Spinal Cord Injury Model Mice. ENeuro, 2018, 5, ENEURO.0303-18.2018.	0.9	26
200	Treatment with a Gamma-Secretase Inhibitor Promotes Functional Recovery in Human iPSC- Derived Transplants for Chronic Spinal Cord Injury. Stem Cell Reports, 2018, 11, 1416-1432.	2.3	66
201	Assessing cortical plasticity after spinal cord injury by using resting-state functional magnetic resonance imaging in awake adult mice. Scientific Reports, 2018, 8, 14406.	1.6	28
202	The pathogenesis linked to coenzyme Q10 insufficiency in iPSC-derived neurons from patients with multiple-system atrophy. Scientific Reports, 2018, 8, 14215.	1.6	50
203	Astrocyte-Derived Exosomes Treated With a Semaphorin 3A Inhibitor Enhance Stroke Recovery via Prostaglandin D ₂ Synthase. Stroke, 2018, 49, 2483-2494.	1.0	78
204	Versatile Roles of LKB1 Kinase Signaling in Neural Development and Homeostasis. Frontiers in Molecular Neuroscience, 2018, 11, 354.	1.4	18
205	T-type Calcium Channels Determine the Vulnerability of Dopaminergic Neurons to Mitochondrial Stress in Familial Parkinson Disease. Stem Cell Reports, 2018, 11, 1171-1184.	2.3	66
206	Control of directionality of chromatin folding for the inter- and intra-domain contacts at the Tfap2c–Bmp7 locus. Epigenetics and Chromatin, 2018, 11, 51.	1.8	3
207	The LKB1-SIK Pathway Controls Dendrite Self-Avoidance in Purkinje Cells. Cell Reports, 2018, 24, 2808-2818.e4.	2.9	20
208	The Amelioration of Pain-Related Behavior in Mice with Chronic Spinal Cord Injury Treated with Neural Stem/Progenitor Cell Transplantation Combined with Treadmill Training. Journal of Neurotrauma, 2018, 35, 2561-2571.	1.7	32
209	Optogenetic astrocyte activation evokes BOLD fMRI response with oxygen consumption without neuronal activity modulation. Glia, 2018, 66, 2013-2023.	2.5	72
210	Establishment of a human induced stem cell line (FUi002-A) from Dravet syndrome patient carrying heterozygous R1525X mutation in SCN1A gene. Stem Cell Research, 2018, 31, 11-15.	0.3	6
211	Stem cells purified from human induced pluripotent stem cell-derived neural crest-like cells promote peripheral nerve regeneration. Scientific Reports, 2018, 8, 10071.	1.6	39
212	HER2 Heterogeneity Is Associated with Poor Survival in HER2-Positive Breast Cancer. International Journal of Molecular Sciences, 2018, 19, 2158.	1.8	22
213	Nitrative Stress and Tau Accumulation in Amyotrophic Lateral Sclerosis/Parkinsonism-Dementia Complex (ALS/PDC) in the Kii Peninsula, Japan. Frontiers in Neuroscience, 2018, 11, 751.	1.4	15
214	Single-cell trajectory analysis of human homogenous neurons carrying a rare RELN variant. Translational Psychiatry, 2018, 8, 129.	2.4	27
215	Modeling sporadic ALS in iPSC-derived motor neurons identifies a potential therapeutic agent. Nature Medicine, 2018, 24, 1579-1589.	15.2	268
216	Calcium Transient Dynamics of Neural Ensembles in the Primary Motor Cortex of Naturally Behaving Monkeys. Cell Reports, 2018, 24, 2191-2195.e4.	2.9	57

#	Article	IF	Citations
217	Responses to pup vocalizations in subordinate naked mole-rats are induced by estradiol ingested through coprophagy of queen's feces. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9264-9269.	3.3	26
218	Rostrocaudal Areal Patterning of Human PSC-Derived Cortical Neurons by FGF8 Signaling. ENeuro, 2018, 5, ENEURO.0368-17.2018.	0.9	11
219	Changeability of the fully methylated status of the 15q11.2 region in induced pluripotent stem cells derived from a patient with Praderâ€Willi syndrome. Congenital Anomalies (discontinued), 2017, 57, 96-103.	0.3	11
220	Efficient induction of dopaminergic neuron differentiation from induced pluripotent stem cells reveals impaired mitophagy in PARK2 neurons. Biochemical and Biophysical Research Communications, 2017, 483, 88-93.	1.0	55
221	q-Space Myelin Map imaging for longitudinal analysis of demyelination and remyelination in multiple sclerosis patients treated with fingolimod: A preliminary study. Journal of the Neurological Sciences, 2017, 373, 352-357.	0.3	21
222	Whole-Genome DNA Methylation Analyses Revealed Epigenetic Instability in Tumorigenic Human iPS Cell-Derived Neural Stem/Progenitor Cells. Stem Cells, 2017, 35, 1316-1327.	1.4	39
223	Dysfunction of ventrolateral striatal dopamine receptor type 2-expressing medium spiny neurons impairs instrumental motivation. Nature Communications, 2017, 8, 14304.	5.8	46
224	Altered Tau Isoform Ratio Caused by Loss of FUS and SFPQ Function Leads to FTLD-like Phenotypes. Cell Reports, 2017, 18, 1118-1131.	2.9	83
225	Brief exposure to small molecules allows induction of mouse embryonic fibroblasts into neural crestâ€like precursors. FEBS Letters, 2017, 591, 590-602.	1.3	11
226	Enhanced Functional Recovery from Spinal Cord Injury in Aged Mice after Stem Cell Transplantation through HGF Induction. Stem Cell Reports, 2017, 8, 509-518.	2.3	43
227	Induction of hair follicle dermal papilla cell properties in human induced pluripotent stem cell-derived multipotent LNGFR(+)THY-1(+) mesenchymal cells. Scientific Reports, 2017, 7, 42777.	1.6	45
228	Correlation of insulin resistance and motor function in spinal and bulbar muscular atrophy. Journal of Neurology, 2017, 264, 839-847.	1.8	27
229	Evaluation of the immunogenicity of human iPS cell-derived neural stem/progenitor cells in vitro. Stem Cell Research, 2017, 19, 128-138.	0.3	24
230	Applications of induced pluripotent stem cell technologies in spinal cord injury. Journal of Neurochemistry, 2017, 141, 848-860.	2.1	52
231	Fail-Safe System against Potential Tumorigenicity after Transplantation of iPSC Derivatives. Stem Cell Reports, 2017, 8, 673-684.	2.3	99
232	Skin-Derived Precursors as a Source of Progenitors for Corneal Endothelial Regeneration. Stem Cells Translational Medicine, 2017, 6, 788-798.	1.6	37
233	Development of a practical sandwich assay to detect human pluripotent stem cells using cell culture media. Regenerative Therapy, 2017, 6, 1-8.	1.4	7
234	Elucidation of developmental patterns of marmoset corpus callosum through a comparative MRI in marmosets, chimpanzees, and humans. Neuroscience Research, 2017, 122, 25-34.	1.0	12

#	Article	IF	CITATIONS
235	Muscle architectural properties in the common marmoset (Callithrix jacchus). Primates, 2017, 58, 461-472.	0.7	8
236	In vivo microscopic voxel-based morphometry with a brain template to characterize strain-specific structures in the mouse brain. Scientific Reports, 2017, 7, 85.	1.6	52
237	Regulation of RhoA by STAT3 coordinates glial scar formation. Journal of Cell Biology, 2017, 216, 2533-2550.	2.3	67
238	Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway. Nature Communications, 2017, 8, 28.	5.8	287
239	Hypoxia Epigenetically Confers Astrocytic Differentiation Potential on Human Pluripotent Cell-Derived Neural Precursor Cells. Stem Cell Reports, 2017, 8, 1743-1756.	2.3	28
240	Technical feasibility of visualizing myenteric plexus using confocal laser endomicroscopy. Journal of Gastroenterology and Hepatology (Australia), 2017, 32, 1604-1610.	1.4	6
241	Assessment of Mitophagy in iPS Cell-Derived Neurons. Methods in Molecular Biology, 2017, 1759, 59-67.	0.4	5
242	Cochlear Cell Modeling Using Disease-Specific iPSCs Unveils a Degenerative Phenotype and Suggests Treatments for Congenital Progressive Hearing Loss. Cell Reports, 2017, 18, 68-81.	2.9	63
243	Differential gene expression profiles in neurons generated from lymphoblastoid B-cell line-derived iPS cells from monozygotic twin cases with treatment-resistant schizophrenia and discordant responses to clozapine. Schizophrenia Research, 2017, 181, 75-82.	1.1	47
244	Developmental trajectories of macroanatomical structures in common marmoset brain. Neuroscience, 2017, 364, 143-156.	1.1	18
245	STAT3-regulated RhoA drives reactive astrocyte dynamics. Cell Cycle, 2017, 16, 1995-1996.	1.3	11
246	An RNA-binding protein, Qki5, regulates embryonic neural stem cells through pre-mRNA processing in cell adhesion signaling. Genes and Development, 2017, 31, 1910-1925.	2.7	48
247	Low immunogenicity of mouse induced pluripotent stem cell-derived neural stem/progenitor cells. Scientific Reports, 2017, 7, 12996.	1.6	22
248	Mapping orbitofrontal-limbic maturation in non-human primates: A longitudinal magnetic resonance imaging study. Neurolmage, 2017, 163, 55-67.	2.1	19
249	Three-dimensional kinematic and kinetic analysis of quadrupedal walking in the common marmoset (Callithrix jacchus). Neuroscience Research, 2017, 125, 11-20.	1.0	11
250	Generation of neural cells using iPSCs from sleep bruxism patients with 5-HT2A polymorphism. Journal of Prosthodontic Research, 2017, 61, 242-250.	1.1	12
251	LNGFR (+) THY-1 (+) multipotent stem cells derived from human induced pluripotent stem cells. Mechanisms of Development, 2017, 145, S169-S170.	1.7	0
252	Visualization of migration of human cortical neurons generated from induced pluripotent stem cells. Journal of Neuroscience Methods, 2017, 289, 57-63.	1.3	9

#	Article	IF	Citations
253	Regulation of Sema3c and the Interaction between Cardiac Neural Crest and Second Heart Field during Outflow Tract Development. Scientific Reports, 2017, 7, 6771.	1.6	45
254	Backbone and side chain assignments of the second RNA-binding domain of Musashi-1 in its free form and in complex with 5-mer RNA. Biomolecular NMR Assignments, 2017, 11, 265-268.	0.4	3
255	The Semaphorin 3A inhibitor SM-345431 preserves corneal nerve and epithelial integrity in a murine dry eye model. Scientific Reports, 2017, 7, 15584.	1.6	25
256	Naive-like ESRRB+ iPSCs with the Capacity for Rapid Neural Differentiation. Stem Cell Reports, 2017, 9, 1825-1838.	2.3	16
257	Escape from Pluripotency via Inhibition of TGF- \hat{l}^2 /BMP and Activation of Wnt Signaling Accelerates Differentiation and Aging in hPSC Progeny Cells. Stem Cell Reports, 2017, 9, 1675-1691.	2.3	54
258	Enteric Glial Dysfunction Evoked by Apolipoprotein E Deficiency Contributes to Delayed Gastric Emptying. Digestive Diseases and Sciences, 2017, 62, 3359-3369.	1.1	7
259	Evidence that phosphorylated ubiquitin signaling is involved in the etiology of Parkinson's disease. Human Molecular Genetics, 2017, 26, 3172-3185.	1.4	42
260	Isolation of dental pulp stem cells with high osteogenic potential. Inflammation and Regeneration, 2017, 37, 8.	1.5	32
261	Astrocyteâ€mediated infantileâ€onset leukoencephalopathy mouse model. Glia, 2017, 65, 150-168.	2.5	20
262	Sox21 deletion in mice causes postnatal growth deficiency without physiological disruption of hypothalamic-pituitary endocrine axes. Molecular and Cellular Endocrinology, 2017, 439, 213-223.	1.6	11
263	Structural Insight into the Recognition of r(UAG) by Musashi-1 RBD2, and Construction of a Model of Musashi-1 RBD1-2 Bound to the Minimum Target RNA. Molecules, 2017, 22, 1207.	1.7	31
264	Plasticity and regeneration in the injured spinal cord after cell transplantation therapy. Progress in Brain Research, 2017, 231, 33-56.	0.9	31
265	RNA Sequencing Analysis Reveals Interactions between Breast Cancer or Melanoma Cells and the Tissue Microenvironment during Brain Metastasis. BioMed Research International, 2017, 2017, 1-10.	0.9	28
266	SOX10 Expression as Well as <i>BRAF</i> and <i>GNAQ/11</i> Mutations Distinguish Pigmented Ciliary Epithelium Neoplasms From Uveal Melanomas. , 2017, 58, 5445.		13
267	A noncoding RNA containing a SINE-B1 motif associates with meiotic metaphase chromatin and has an indispensable function during spermatogenesis. PLoS ONE, 2017, 12, e0179585.	1.1	12
268	Neuroscience Research Using Non-human Primate Models and Genome Editing. Research and Perspectives in Neurosciences, 2017, , 73-81.	0.4	2
269	Developmental trajectory of the corpus callosum from infancy to the juvenile stage: Comparative MRI between chimpanzees and humans. PLoS ONE, 2017, 12, e0179624.	1.1	32
270	Teratoma Formation Assay for Assessing Pluripotency and Tumorigenicity of Pluripotent Stem Cells. Bio-protocol, 2017, 7, e2518.	0.2	6

#	Article	IF	CITATIONS
271	The prospects of regenerative medicine combined with rehabilitative approaches for chronic spinal cord injury animal models. Neural Regeneration Research, 2017, 12, 43.	1.6	19
272	Generation of Induced Pluripotent Stem Cells and Neural Stem/Progenitor Cells from Newborns with Spina Bifida Aperta. Asian Spine Journal, 2017, 11, 870-879.	0.8	4
273	CHARGE syndrome modeling using patient-iPSCs reveals defective migration of neural crest cells harboring CHD7 mutations. ELife, 2017, 6, .	2.8	52
274	MIF: functions in brain and glioblastoma. Oncotarget, 2017, 8, 46706-46707.	0.8	4
275	Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins. Stem Cells International, 2016, 2016, 1-10.	1.2	19
276	Sustained Effect of Hyaluronic Acid in Subcutaneous Administration to the Cochlear Spiral Ganglion. PLoS ONE, 2016, 11, e0153957.	1.1	5
277	Distinct Expression Pattern of a Deafness Gene, <i>KIAA1199</i> , in a Primate Cochlea. BioMed Research International, 2016, 2016, 1-8.	0.9	14
278	Applications of Mesenchymal Stem Cells and Neural Crest Cells in Craniofacial Skeletal Research. Stem Cells International, 2016, 2016, 1-8.	1.2	8
279	Induction of artificial cancer stem cells from tongue cancer cells by defined reprogramming factors. BMC Cancer, 2016, 16, 548.	1.1	11
280	Differential X Chromosome Inactivation Patterns during the Propagation of Human Induced Pluripotent Stem Cells. Keio Journal of Medicine, 2016, 66, 1-8.	0.5	6
281	Fluorescence Visualization of the Enteric Nervous Network in a Chemically Induced Aganglionosis Model. PLoS ONE, 2016, 11, e0150579.	1.1	9
282	Generation of a Nonhuman Primate Model of Severe Combined Immunodeficiency Using Highly Efficient Genome Editing. Cell Stem Cell, 2016, 19, 127-138.	5.2	139
283	q-space MR imaging of gastric carcinoma ex vivo: Correlation with histopathologic findings. Magnetic Resonance in Medicine, 2016, 76, 602-612.	1.9	10
284	In vitro characterization of neurite extension using induced pluripotent stem cells derived from lissencephaly patients with TUBA1A missense mutations. Molecular Brain, 2016, 9, 70.	1.3	22
285	Functional brain mapping using specific sensory-circuit stimulation and a theoretical graph network analysis in mice with neuropathic allodynia. Scientific Reports, 2016, 6, 37802.	1.6	30
286	Functional Comparison of Neuronal Cells Differentiated from Human Induced Pluripotent Stem Cell–Derived Neural Stem Cells under Different Oxygen and Medium Conditions. Journal of Biomolecular Screening, 2016, 21, 1054-1064.	2.6	5
287	Pathological classification of human iPSC-derived neural stem/progenitor cells towards safety assessment of transplantation therapy for CNS diseases. Molecular Brain, 2016, 9, 85.	1.3	38
288	CHD7 promotes proliferation of neural stem cells mediated by MIF. Molecular Brain, 2016, 9, 96.	1.3	28

#	Article	IF	CITATIONS
289	Neural changes in the primate brain correlated with the evolution of complex motor skills. Scientific Reports, 2016, 6, 31084.	1.6	15
290	Analysis of RNA metabolism in peripheral WBCs of TDP-43 KI mice identifies novel biomarkers of ALS. Neuroscience Research, 2016, 106, 12-22.	1.0	3
291	H1foo Has a Pivotal Role in Qualifying Induced Pluripotent Stem Cells. Stem Cell Reports, 2016, 6, 825-833.	2.3	40
292	Overlapping expression of anion exchangers in the cochlea of a non-human primate suggests functional compensation. Neuroscience Research, 2016, 110, 1-10.	1.0	24
293	SAMD9 mutations cause a novel multisystem disorder, MIRAGE syndrome, and are associated with loss of chromosome 7. Nature Genetics, 2016, 48, 792-797.	9.4	243
294	LNGFR+THY-1+ human pluripotent stem cell-derived neural crest-like cells have the potential to develop into mesenchymal stem cells. Differentiation, 2016, 92, 270-280.	1.0	20
295	Musashi mediates translational repression of the <i>Drosophila </i> hypoxia inducible factor. Nucleic Acids Research, 2016, 44, 7555-7567.	6.5	12
296	Application of <i>q</i> -Space Diffusion MRI for the Visualization of White Matter. Journal of Neuroscience, 2016, 36, 2796-2808.	1.7	56
297	Robust production of human neural cells by establishing neuroepithelial-like stem cells from peripheral blood mononuclear cell-derived feeder-free iPSCs under xeno-free conditions. Neuroscience Research, 2016, 110, 18-28.	1.0	18
298	Pretreatment with a Î ³ -Secretase Inhibitor Prevents Tumor-like Overgrowth in Human iPSC-Derived Transplants for Spinal Cord Injury. Stem Cell Reports, 2016, 7, 649-663.	2.3	79
299	Physiological effects of a habituation procedure for functional MRI in awake mice using a cryogenic radiofrequency probe. Journal of Neuroscience Methods, 2016, 274, 38-48.	1.3	78
300	Combined treatment with chondroitinase ABC and treadmill rehabilitation for chronic severe spinal cord injury in adult rats. Neuroscience Research, 2016, 113, 37-47.	1.0	53
301	Worldwide initiatives to advance brain research. Nature Neuroscience, 2016, 19, 1118-1122.	7.1	107
302	How can brain mapping initiatives cooperate to achieve the same goal?. Nature Reviews Neuroscience, 2016, 17, 733-734.	4.9	7
303	A new era for Inflammation and Regeneration. Inflammation and Regeneration, 2016, 36, 3.	1.5	0
304	Identification of hepta-histidine as a candidate drug for Huntington's disease by in silico-in vitro- in vivo-integrated screens of chemical libraries. Scientific Reports, 2016, 6, 33861.	1.6	9
305	Modeling neurological diseases with induced pluripotent cells reprogrammed from immortalized lymphoblastoid cell lines. Molecular Brain, 2016, 9, 88.	1.3	21
306	Analysis of induced pluripotent stem cells carrying 22q11.2 deletion. Translational Psychiatry, 2016, 6, e934-e934.	2.4	85

#	Article	IF	Citations
307	Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nature Communications, 2016, 7, 11471.	5.8	81
308	Functional Recovery from Neural Stem/Progenitor Cell Transplantation Combined with Treadmill Training in Mice with Chronic Spinal Cord Injury. Scientific Reports, 2016, 6, 30898.	1.6	84
309	Brain/MINDS: A Japanese National Brain Project for Marmoset Neuroscience. Neuron, 2016, 92, 582-590.	3.8	174
310	To the Cloud! A Grassroots Proposal to Accelerate Brain Science Discovery. Neuron, 2016, 92, 622-627.	3.8	46
311	Distinct Expression Patterns Of Causative Genes Responsible For Hereditary Progressive Hearing Loss In Non-Human Primate Cochlea. Scientific Reports, 2016, 6, 22250.	1.6	53
312	Heterochronic microRNAs in temporal specification of neural stem cells: application toward rejuvenation. Npj Aging and Mechanisms of Disease, 2016, 2, 15014.	4.5	9
313	Expression pattern of wolframin, the WFS1 (Wolfram syndrome-1 gene) product, in common marmoset (Callithrix jacchus) cochlea. NeuroReport, 2016, 27, 833-836.	0.6	25
314	Image-based detection and targeting of therapy resistance in pancreatic adenocarcinoma. Nature, 2016, 534, 407-411.	13.7	114
315	RNA regulation went wrong in neurodevelopmental disorders: The example of Msi/Elavl RNA binding proteins. International Journal of Developmental Neuroscience, 2016, 55, 124-130.	0.7	20
316	Gastric carcinoma: Evaluation with diffusion-tensor MR imaging and tractography ex vivo. Magnetic Resonance Imaging, 2016, 34, 144-151.	1.0	7
317	α-Synuclein aggregation in the olfactory bulb of middle-aged common marmoset. Neuroscience Research, 2016, 106, 55-61.	1.0	7
318	Establishment of InÂVitro FUS-Associated Familial Amyotrophic Lateral Sclerosis Model Using Human Induced Pluripotent Stem Cells. Stem Cell Reports, 2016, 6, 496-510.	2.3	74
319	MIF Maintains the Tumorigenic Capacity of Brain Tumor–Initiating Cells by Directly Inhibiting p53. Cancer Research, 2016, 76, 2813-2823.	0.4	54
320	Safe and efficient method for cryopreservation of human induced pluripotent stem cell-derived neural stem and progenitor cells by a programmed freezer with a magnetic field. Neuroscience Research, 2016, 107, 20-29.	1.0	31
321	Functional Neurons Generated from T Cell-Derived Induced Pluripotent Stem Cells for Neurological Disease Modeling. Stem Cell Reports, 2016, 6, 422-435.	2.3	56
322	The Mediator Kinase Module Restrains Epidermal Growth Factor Receptor Signaling and Represses Vulval Cell Fate Specification in <i>Caenorhabditis elegans</i>	1.2	19
323	Grafted Human iPS Cell-Derived Oligodendrocyte Precursor Cells Contribute to Robust Remyelination of Demyelinated Axons after Spinal Cord Injury. Stem Cell Reports, 2016, 6, 1-8.	2.3	168
324	Sphere-formation culture of testicular germ cells in the common marmoset, a small New World monkey. Primates, 2016, 57, 129-135.	0.7	6

#	Article	IF	CITATIONS
325	Purified Human Dental Pulp Stem Cells Promote Osteogenic Regeneration. Journal of Dental Research, 2016, 95, 206-214.	2.5	57
326	IL-10 gene transfer upregulates arcuate POMC and ameliorates hyperphagia, obesity and diabetes by substituting for leptin. International Journal of Obesity, 2016, 40, 425-433.	1.6	39
327	JMJD1C Exhibits Multiple Functions in Epigenetic Regulation during Spermatogenesis. PLoS ONE, 2016, 11, e0163466.	1.1	13
328	Notch2 Signaling Regulates the Proliferation of Murine Bone Marrow-Derived Mesenchymal Stem/Stromal Cells via c-Myc Expression. PLoS ONE, 2016, 11, e0165946.	1.1	19
329	Involvement of the Septo-Hippocampal Cholinergic Pathway in Association with Septal Acetylcholinesterase Upregulation in a Mouse Model of Tauopathy. Current Alzheimer Research, 2016, 14, 94-103.	0.7	13
330	Modeling Rett Syndrome Using Human Induced Pluripotent Stem Cells. CNS and Neurological Disorders - Drug Targets, 2016, 15, 544-550.	0.8	7
331	MHC-compatible bone marrow stromal/stem cells trigger fibrosis by activating host T cells in a scleroderma mouse model. ELife, 2016, 5, e09394.	2.8	26
332	Controlling the Regional Identity of hPSC-Derived Neurons to Uncover Neuronal Subtype Specificity of Neurological Disease Phenotypes. Stem Cell Reports, 2015, 5, 1010-1022.	2.3	84
333	Acute reduction of neuronal RNA binding Elavl2 protein and Gap43 mRNA in mouse hippocampus after kainic acid treatment. Biochemical and Biophysical Research Communications, 2015, 466, 46-51.	1.0	9
334	A new minimally-invasive method for microinjection into the mouse spinal dorsal horn. Scientific Reports, 2015, 5, 14306.	1.6	69
335	Investigation of the fatty acid transporter-encoding genes SLC27A3 and SLC27A4 in autism. Scientific Reports, 2015, 5, 16239.	1.6	12
336	Resequencing of the common marmoset genome improves genome assemblies and gene-coding sequence analysis. Scientific Reports, 2015, 5, 16894.	1.6	32
337	Differentiation of multipotent neural stem cells derived from Rett syndrome patients is biased toward the astrocytic lineage. Molecular Brain, 2015, 8, 31.	1.3	77
338	Alternative role of HuD splicing variants in neuronal differentiation. Journal of Neuroscience Research, 2015, 93, 399-409.	1.3	18
339	Neural stem/progenitor cell″aden microfibers promote transplant survival in a mouse transected spinal cord injury model. Journal of Neuroscience Research, 2015, 93, 1826-1838.	1.3	34
340	Control of the Survival and Growth of Human Glioblastoma Grafted into the Spinal Cord of Mice by Taking Advantage of Immunorejection. Cell Transplantation, 2015, 24, 1299-1311.	1.2	10
341	Esophageal carcinoma: Evaluation with qâ€space diffusionâ€weighted MR imaging ex vivo. Magnetic Resonance in Medicine, 2015, 73, 2262-2273.	1.9	22
342	Controlling Immune Rejection Is a Fail-Safe System against Potential Tumorigenicity after Human iPSC-Derived Neural Stem Cell Transplantation. PLoS ONE, 2015, 10, e0116413.	1.1	37

#	Article	IF	Citations
343	Optogenetic Activation of CA1 Pyramidal Neurons at the Dorsal and Ventral Hippocampus Evokes Distinct Brain-Wide Responses Revealed by Mouse fMRI. PLoS ONE, 2015, 10, e0121417.	1.1	49
344	Dynamic regulation of innate immune responses in <i>Drosophila</i> by Senju-mediated glycosylation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5809-5814.	3.3	23
345	Allogeneic Neural Stem/Progenitor Cells Derived From Embryonic Stem Cells Promote Functional Recovery After Transplantation Into Injured Spinal Cord of Nonhuman Primates. Stem Cells Translational Medicine, 2015, 4, 708-719.	1.6	58
346	BDNF Induced by Treadmill Training Contributes to the Suppression of Spasticity and Allodynia After Spinal Cord Injury via Upregulation of KCC2. Neurorehabilitation and Neural Repair, 2015, 29, 677-689.	1.4	84
347	Voxel-based morphometry of the marmoset brain: In vivo detection of volume loss in the substantia nigra of the MPTP-treated Parkinson's disease model. Neuroscience, 2015, 300, 585-592.	1.1	29
348	Muscle Satellite Cell Protein Teneurin-4 Regulates Differentiation During Muscle Regeneration. Stem Cells, 2015, 33, 3017-3027.	1.4	13
349	Rapid, efficient, and simple motor neuron differentiation from human pluripotent stem cells. Molecular Brain, 2015, 8, 79.	1.3	78
350	Engrafted Neural Stem/Progenitor Cells Promote Functional Recovery through Synapse Reorganization with Spared Host Neurons after Spinal Cord Injury. Stem Cell Reports, 2015, 5, 264-277.	2.3	48
351	Utility of Scalp Hair Follicles as a Novel Source of Biomarker Genes for Psychiatric Illnesses. Biological Psychiatry, 2015, 78, 116-125.	0.7	43
352	Long-Term Safety Issues of iPSC-Based Cell Therapy in a Spinal Cord Injury Model: Oncogenic Transformation with Epithelial-Mesenchymal Transition. Stem Cell Reports, 2015, 4, 360-373.	2.3	187
353	Parkinson Disease: Diffusion MR Imaging to Detect Nigrostriatal Pathway Loss in a Marmoset Model Treated with 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Radiology, 2015, 275, 430-437.	3.6	39
354	Connectomics: comprehensive approaches for whole-brain mapping. Microscopy (Oxford, England), 2015, 64, 57-67.	0.7	22
355	Manipulating cell fate in the cochlea: a feasible therapy for hearing loss. Trends in Neurosciences, 2015, 38, 139-144.	4.2	25
356	Migration and differentiation of transplanted enteric neural crest-derived cells in murine model of Hirschsprung's disease. Cytotechnology, 2015, 67, 661-670.	0.7	16
357	Notch Inhibition Induces Cochlear Hair Cell Regeneration and Recovery of Hearing after Acoustic Trauma. Neuron, 2015, 86, 341.	3.8	6
358	STAT3-dependent reactive astrogliosis in the spinal dorsal horn underlies chronic itch. Nature Medicine, 2015, 21, 927-931.	15.2	154
359	Brain/MINDS: brain-mapping project in Japan. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140310.	1.8	89
360	Gastric Carcinoma: Ex Vivo MR Imaging at 7.0 T–Correlation with Histopathologic Findings. Radiology, 2015, 275, 841-848.	3.6	13

#	Article	IF	Citations
361	I2020T mutant LRRK2 iPSC-derived neurons in the Sagamihara family exhibit increased Tau phosphorylation through the AKT/GSK- $3\hat{l}^2$ signaling pathway. Human Molecular Genetics, 2015, 24, 4879-4900.	1.4	56
362	Histological and electrophysiological analysis of the corticospinal pathway to forelimb motoneurons in common marmosets. Neuroscience Research, 2015, 98, 35-44.	1.0	25
363	Ultra-high-resolution MR imaging of esophageal carcinoma at ultra-high field strength (7.0T) ex vivo: correlation with histopathologic findings. Magnetic Resonance Imaging, 2015, 33, 413-419.	1.0	20
364	Brains, Genes, and Primates. Neuron, 2015, 86, 617-631.	3.8	231
365	Marmoset neuroscience. Neuroscience Research, 2015, 93, 1-2.	1.0	21
366	Gene expression ontogeny of spermatogenesis in the marmoset uncovers primate characteristics during testicular development. Developmental Biology, 2015, 400, 43-58.	0.9	15
367	Disrupted-in-schizophrenia 1 regulates transport of ITPR1 mRNA for synaptic plasticity. Nature Neuroscience, 2015, 18, 698-707.	7.1	51
368	Novel inÂvivo imaging analysis of an inner ear drug delivery system: Drug availability in inner ear following different dose of systemic drug injections. Hearing Research, 2015, 330, 142-146.	0.9	9
369	MicroRNA-153 Regulates the Acquisition of Gliogenic Competence by Neural Stem Cells. Stem Cell Reports, 2015, 5, 365-377.	2.3	45
370	Immuno-Electron Microscopy and Electron Microscopic In Situ Hybridization for Visualizing piRNA Biogenesis Bodies in Drosophila Ovaries. Methods in Molecular Biology, 2015, 1328, 163-178.	0.4	21
371	CD34 and CD49f Double-Positive and Lineage Marker-Negative Cells Isolated from Human Myometrium Exhibit Stem Cell-Like Properties Involved in Pregnancy-Induced Uterine Remodeling1. Biology of Reproduction, 2015, 93, 37.	1.2	22
372	Endometrial Side Population Cells: Potential Adult Stem/Progenitor Cells in Endometrium 1. Biology of Reproduction, 2015, 93, 84.	1.2	37
373	Brain-mapping projects using the common marmoset. Neuroscience Research, 2015, 93, 3-7.	1.0	82
374	RNA-binding protein research with transcriptome-wide technologies in neural development. Cell and Tissue Research, 2015, 359, 135-144.	1.5	21
375	Clinical Utility of Neuronal Cells Directly Converted from Fibroblasts of Patients for Neuropsychiatric Disorders: Studies of Lysosomal Storage Diseases and Channelopathy. Current Molecular Medicine, 2015, 15, 138-145.	0.6	14
376	Pharmacological Inhibition of Cochlear Mitochondrial Respiratory Chain Induces Secondary Inflammation in the Lateral Wall: A Potential Therapeutic Target for Sensorineural Hearing Loss. PLoS ONE, 2014, 9, e90089.	1.1	26
377	Regulatory Factor X Transcription Factors Control Musashi1 Transcription in Mouse Neural Stem/Progenitor Cells. Stem Cells and Development, 2014, 23, 2250-2261.	1.1	21
378	Thoracic and thoracoabdominal aortic repair under regional spinal cord hypothermia. European Journal of Cardio-thoracic Surgery, 2014, 46, 40-43.	0.6	21

#	Article	IF	CITATIONS
379	Inflammatory and immune responses in the cochlea: potential therapeutic targets for sensorineural hearing loss. Frontiers in Pharmacology, 2014, 5, 287.	1.6	103
380	Proposing a new RNA quadruplex structure: j-motif, with possible links to neural development. Journal of Biochemistry, 2014, 155, 385-392.	0.9	0
381	Cadherin-7 Regulates Mossy Fiber Connectivity in the Cerebellum. Cell Reports, 2014, 9, 311-323.	2.9	42
382	Diffusion-tensor MRI and tractography of the esophageal wall ex vivo. Journal of Magnetic Resonance Imaging, 2014, 40, 567-576.	1.9	18
383	Common marmoset as a new model animal for neuroscience research and genome editing technology. Development Growth and Differentiation, 2014, 56, 53-62.	0.6	174
384	Esophageal Carcinoma: Ex Vivo Evaluation with Diffusion-Tensor MR Imaging and Tractography at 7 T. Radiology, 2014, 272, 164-173.	3.6	25
385	The miR-17/106–p38 axis is a key regulator of the neurogenic-to-gliogenic transition in developing neural stem/progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1604-1609.	3.3	53
386	Prenatal Deletion of the RNA-Binding Protein HuD Disrupts Postnatal Cortical Circuit Maturation and Behavior. Journal of Neuroscience, 2014, 34, 3674-3686.	1.7	62
387	Regeneration of the damaged central nervous system through reprogramming technology: Basic concepts and potential application for cell replacement therapy. Experimental Neurology, 2014, 260, 12-18.	2.0	30
388	Generation of germ cells in vitro in the era of induced pluripotent stem cells. Molecular Reproduction and Development, 2014, 81, 2-19.	1.0	26
389	Evolutionarily Dynamic Alternative Splicing of <i>GPR56</i> Regulates Regional Cerebral Cortical Patterning. Science, 2014, 343, 764-768.	6.0	238
390	Modeling human neurological disorders with induced pluripotent stem cells. Journal of Neurochemistry, 2014, 129, 388-399.	2.1	93
391	Differentiation, polarization, and migration of human induced pluripotent stem cell-derived neural progenitor cells co-cultured with a human glial cell line with radial glial-like characteristics. Biochemical and Biophysical Research Communications, 2014, 447, 683-688.	1.0	18
392	Human speech- and reading-related genes display partially overlapping expression patterns in the marmoset brain. Brain and Language, 2014, 133, 26-38.	0.8	34
393	Promise of Human Induced Pluripotent Stem Cells in Skin Regeneration and Investigation. Journal of Investigative Dermatology, 2014, 134, 605-609.	0.3	28
394	Increased L1 Retrotransposition in the Neuronal Genome in Schizophrenia. Neuron, 2014, 81, 306-313.	3.8	277
395	Three-dimensional motion analysis of arm-reaching movements in healthy and hemispinalized common marmosets. Behavioural Brain Research, 2014, 275, 259-268.	1.2	14
396	Focal Transplantation of Human iPSC-Derived Glial-Rich Neural Progenitors Improves Lifespan of ALS Mice. Stem Cell Reports, 2014, 3, 242-249.	2.3	131

#	Article	IF	Citations
397	Leptin Receptor Makes Its Mark on MSCs. Cell Stem Cell, 2014, 15, 112-114.	5.2	30
398	Rewiring of regenerated axons by combining treadmill training with semaphorin3A inhibition. Molecular Brain, 2014, 7, 14.	1.3	45
399	iPS cell technologies: significance and applications to CNS regeneration and disease. Molecular Brain, 2014, 7, 22.	1.3	204
400	Reprogramming non-human primate somatic cells into functional neuronal cells by defined factors. Molecular Brain, 2014, 7, 24.	1.3	26
401	The use of induced pluripotent stem cells to reveal pathogenic gene mutations and explore treatments for retinitis pigmentosa. Molecular Brain, 2014, 7, 45.	1.3	95
402	Yb Integrates piRNA Intermediates and Processing Factors into Perinuclear Bodies to Enhance piRISC Assembly. Cell Reports, 2014, 8, 103-113.	2.9	62
403	Inflammatory cascades mediate synapse elimination in spinal cord compression. Journal of Neuroinflammation, 2014, 11, 40.	3.1	34
404	Involvement of ER Stress in Dysmyelination of Pelizaeus-Merzbacher Disease with PLP1 Missense Mutations Shown by iPSC-Derived Oligodendrocytes. Stem Cell Reports, 2014, 2, 648-661.	2.3	100
405	Small RNA profiling and characterization of piRNA clusters in the adult testes of the common marmoset, a model primate. Rna, 2014, 20, 1223-1237.	1.6	80
406	Global gene expression analysis following spinal cord injury in non-human primates. Experimental Neurology, 2014, 261, 171-179.	2.0	33
407	Transplantation of Neural Stem/Progenitor Cells at Different Locations in Mice with Spinal Cord Injury. Cell Transplantation, 2014, 23, 1451-1464.	1.2	29
408	Birth of Healthy Offspring following ICSI in In Vitro-Matured Common Marmoset (Callithrix jacchus) Oocytes. PLoS ONE, 2014, 9, e95560.	1.1	43
409	A human Dravet syndrome model from patient induced pluripotent stem cells. Molecular Brain, 2013, 6, 19.	1.3	111
410	Time-dependent changes in the microenvironment of injured spinal cord affects the therapeutic potential of neural stem cell transplantation for spinal cord injury. Molecular Brain, 2013, 6, 3.	1.3	137
411	SOX10 is a novel marker of acinus and intercalated duct differentiation in salivary gland tumors: a clue to the histogenesis for tumor diagnosis. Modern Pathology, 2013, 26, 1041-1050.	2.9	146
412	Human Induced Pluripotent Stem Cell–Derived Ectodermal Precursor Cells Contribute to Hair Follicle Morphogenesis In Vivo. Journal of Investigative Dermatology, 2013, 133, 1479-1488.	0.3	72
413	The long non-coding RNA nuclear-enriched abundant transcript 1_2 induces paraspeckle formation in the motor neuron during the early phase of amyotrophic lateral sclerosis. Molecular Brain, 2013, 6, 31.	1.3	214
414	Epigenetic transcriptional activation of monocyte chemotactic protein 3 contributes to long-lasting neuropathic pain. Brain, 2013, 136, 828-843.	3.7	128

#	Article	IF	CITATIONS
415	Cellular toxicity induced by the 26â€kDa fragment and amyotrophic lateral sclerosisâ€associated mutant forms of <scp>TAR DNA</scp> â€binding proteinÂ43 in human embryonic stem cellâ€derived motor neurons. Neurology and Clinical Neuroscience, 2013, 1, 24-31.	0.2	2
416	Notch Inhibition Induces Cochlear Hair Cell Regeneration and Recovery of Hearing after Acoustic Trauma. Neuron, 2013, 77, 58-69.	3.8	363
417	Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells. Cell Research, 2013, 23, 70-80.	5.7	177
418	Steps Toward Safe Cell Therapy Using Induced Pluripotent Stem Cells. Circulation Research, 2013, 112, 523-533.	2.0	371
419	Olfactory cells via nasal biopsy reflect the developing brain in gene expression profiles: Utility and limitation of the surrogate tissues in research for brain disorders. Neuroscience Research, 2013, 77, 247-250.	1.0	51
420	LNGFR+THY-1+VCAM-1hi+ Cells Reveal Functionally Distinct Subpopulations in Mesenchymal Stem Cells. Stem Cell Reports, 2013, 1, 152-165.	2.3	187
421	Translational Medicine of Stem Cells: Central Nervous System Regeneration and Modeling Neurological Diseases., 2013,, 45-57.		1
422	Diffusion tensor imaging and tractography of the spinal cord: From experimental studies to clinical application. Experimental Neurology, 2013, 242, 74-82.	2.0	51
423	Development and Characterization of cDNA Resources for the Common Marmoset: One of the Experimental Primate Models. DNA Research, 2013, 20, 255-262.	1.5	12
424	Cellâ€intrinsic reprogramming capability: gain or loss of pluripotency in germ cells. Reproductive Medicine and Biology, 2013, 12, 1-14.	1.0	2
425	Functional Corneal Endothelium Derived from Corneal Stroma Stem Cells of Neural Crest Origin by Retinoic Acid and Wnt/β-Catenin Signaling. Stem Cells and Development, 2013, 22, 828-839.	1.1	106
426	Sema3A regulates bone-mass accrual through sensory innervations. Nature, 2013, 497, 490-493.	13.7	329
427	Prospective Isolation of Murine and Human Bone Marrow Mesenchymal Stem Cells Based on Surface Markers. Stem Cells International, 2013, 2013, 1-7.	1.2	58
428	Enhanced Aggregation of Androgen Receptor in Induced Pluripotent Stem Cell-derived Neurons from Spinal and Bulbar Muscular Atrophy. Journal of Biological Chemistry, 2013, 288, 8043-8052.	1.6	45
429	Human Decidua-Derived Mesenchymal Cells Are a Promising Source for the Generation and Cell Banking of Human Induced Pluripotent Stem Cells. Cell Medicine, 2013, 4, 125-147.	5.0	8
430	Novel Method for Analyzing Locomotor Ability After Spinal Cord Injury in Rats: Technical Note. Neurologia Medico-Chirurgica, 2013, 53, 907-913.	1.0	5
431	Sox6 Up-Regulation by Macrophage Migration Inhibitory Factor Promotes Survival and Maintenance of Mouse Neural Stem/Progenitor Cells. PLoS ONE, 2013, 8, e74315.	1.1	21
432	Multidimensional MRI-CT atlas of the naked mole-rat brain (Heterocephalus glaber). Frontiers in Neuroanatomy, 2013, 7, 45.	0.9	8

#	Article	IF	CITATIONS
433	Comparison of Genomic and Epigenomic Expression in Monozygotic Twins Discordant for Rett Syndrome. PLoS ONE, 2013, 8, e66729.	1.1	56
434	Structure of Musashi1 in a complex with target RNA: the role of aromatic stacking interactions. Nucleic Acids Research, 2012, 40, 3218-3231.	6.5	79
435	Molecular signatures to define spermatogenic cells in common marmoset (Callithrix jacchus). Reproduction, 2012, 143, 597-609.	1.1	16
436	MicroRNAs in Neural Stem Cells and Neurogenesis. Frontiers in Neuroscience, 2012, 6, 30.	1.4	106
437	Comparative Anatomy of Marmoset and Mouse Cortex from Genomic Expression. Journal of Neuroscience, 2012, 32, 5039-5053.	1.7	72
438	Isolation of mouse mesenchymal stem cells on the basis of expression of Sca-1 and PDGFR- \hat{l}_{\pm} . Nature Protocols, 2012, 7, 2103-2111.	5.5	247
439	Sox21 Promotes Hippocampal Adult Neurogenesis via the Transcriptional Repression of the <i>Hes5</i> Journal of Neuroscience, 2012, 32, 12543-12557.	1.7	62
440	Abundant Occurrence of Basal Radial Glia in the Subventricular Zone of Embryonic Neocortex of a Lissencephalic Primate, the Common Marmoset Callithrix jacchus. Cerebral Cortex, 2012, 22, 469-481.	1.6	201
441	Bioluminescent system for dynamic imaging of cell and animal behavior. Biochemical and Biophysical Research Communications, 2012, 419, 188-193.	1.0	61
442	Neuronal Elav-like (Hu) Proteins Regulate RNA Splicing and Abundance to Control Glutamate Levels and Neuronal Excitability. Neuron, 2012, 75, 1067-1080.	3.8	190
443	Mitochondrial dysfunction associated with increased oxidative stress and α-synuclein accumulation in PARK2 iPSC-derived neurons and postmortem brain tissue. Molecular Brain, 2012, 5, 35.	1.3	333
444	Macrophage migration inhibitory factor (MIF) promotes cell survival and proliferation of neural stem/progenitor cells. Journal of Cell Science, 2012, 125, 3210-20.	1.2	82
445	Conditions for quantitative evaluation of injured spinal cord by in vivo diffusion tensor imaging and tractography: Preclinical longitudinal study in common marmosets. NeuroImage, 2012, 63, 1841-1853.	2.1	62
446	Establishment of Induced Pluripotent Stem Cells from Centenarians for Neurodegenerative Disease Research. PLoS ONE, 2012, 7, e41572.	1.1	72
447	Derivation of Induced Pluripotent Stem Cells by Retroviral Gene Transduction in Mammalian Species. Methods in Molecular Biology, 2012, 925, 21-48.	0.4	11
448	Direct isolation and RNA-seq reveal environment-dependent properties of engrafted neural stem/progenitor cells. Nature Communications, 2012, 3, 1140.	5.8	65
449	The common marmoset as a novel animal model system for biomedical and neuroscience research applications. Seminars in Fetal and Neonatal Medicine, 2012, 17, 336-340.	1.1	185
450	Cisterna-specific Localization of Glycosylation-related Proteins to the Golgi Apparatus. Cell Structure and Function, 2012, 37, 55-63.	0.5	18

#	Article	IF	Citations
451	RNA-Binding Protein Musashi1 Modulates Glioma Cell Growth through the Post-Transcriptional Regulation of Notch and PI3 Kinase/Akt Signaling Pathways. PLoS ONE, 2012, 7, e33431.	1.1	79
452	Pre-Evaluated Safe Human iPSC-Derived Neural Stem Cells Promote Functional Recovery after Spinal Cord Injury in Common Marmoset without Tumorigenicity. PLoS ONE, 2012, 7, e52787.	1.1	266
453	Novel In Vivo Imaging Analysis of an Inner Ear Drug Delivery System in Mice: Comparison of Inner Ear Drug Concentrations over Time after Transtympanic and Systemic Injections. PLoS ONE, 2012, 7, e48480.	1.1	23
454	Efficient Derivation of Multipotent Neural Stem/Progenitor Cells from Non-Human Primate Embryonic Stem Cells. PLoS ONE, 2012, 7, e49469.	1.1	26
455	MRI Characterization of Paranodal Junction Failure and Related Spinal Cord Changes in Mice. PLoS ONE, 2012, 7, e52904.	1.1	16
456	Donor mesenchymal stem cells trigger chronic graft-versus-host disease following minor antigen-mismatched bone marrow transplantation. Nature Precedings, 2012, , .	0.1	0
457	Neural Stem Cells Directly Differentiated from Partially Reprogrammed Fibroblasts Rapidly Acquire Gliogenic Competency. Stem Cells, 2012, 30, 1109-1119.	1.4	84
458	The Semaphorin 3A Inhibitor SM-345431 Accelerates Peripheral Nerve Regeneration and Sensitivity in a Murine Corneal Transplantation Model. PLoS ONE, 2012, 7, e47716.	1.1	35
459	The First Clinical Trial in Tohoku University Hospital after The Great East Japan Earthquake: The Heroic Efforts of My Friend, Professor Masashi Aoki. Keio Journal of Medicine, 2012, 61, 3-9.	0.5	3
460	CHARACTERISATION OF NEURAL CREST-DERIVED STEM CELLS IN DIFFERENT TISSUES. , 2012, , 87-107.		0
461	Gene Targeting and Subsequent Site-Specific Transgenesis at the \hat{l}^2 -actin(ACTB) Locus in Common Marmoset Embryonic Stem Cells. Stem Cells and Development, 2011, 20, 1587-1599.	1.1	24
462	Generation of Human Melanocytes from Induced Pluripotent Stem Cells. PLoS ONE, 2011, 6, e16182.	1.1	102
463	Strategic Approaches to Regeneration of a Damaged Central Nervous System. Cornea, 2011, 30, S15-S18.	0.9	10
464	Comparative Study of Methods for Administering Neural Stem/Progenitor Cells to Treat Spinal Cord Injury in Mice. Cell Transplantation, 2011, 20, 727-739.	1.2	80
465	Modeling familial Alzheimer's disease with induced pluripotent stem cells. Human Molecular Genetics, 2011, 20, 4530-4539.	1.4	527
466	Expression and Function of Sox21 During Mouse Cochlea Development. Neurochemical Research, 2011, 36, 1261-1269.	1.6	12
467	Cell Therapy for Spinal Cord Injury by Neural Stem/Progenitor Cells Derived from iPS/ES Cells. Neurotherapeutics, 2011, 8, 668-676.	2.1	67
468	Identification of a novel intronic enhancer responsible for the transcriptional regulation of musashi1 in neural stem/progenitor cells. Molecular Brain, 2011, 4, 14.	1.3	23

#	Article	IF	Citations
469	Significance of Remyelination by Neural Stem/Progenitor Cells Transplanted into the Injured Spinal Cord. Stem Cells, 2011, 29, 1983-1994.	1.4	129
470	Schwann cell plasticity after spinal cord injury shown by neural crest lineage tracing. Glia, 2011, 59, 771-784.	2.5	31
471	Beneficial compaction of spinal cord lesion by migrating astrocytes through glycogen synthase kinaseâ€3 inhibition. EMBO Molecular Medicine, 2011, 3, 682-696.	3.3	56
472	Grafted human-induced pluripotent stem-cell–derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16825-16830.	3.3	473
473	Isolation and function of mouse tissue resident vascular precursors marked by myelin protein zero. Journal of Experimental Medicine, 2011, 208, 949-960.	4.2	34
474	Musashi1 Cooperates in Abnormal Cell Lineage Protein 28 (Lin28)-mediated Let-7 Family MicroRNA Biogenesis in Early Neural Differentiation. Journal of Biological Chemistry, 2011, 286, 16121-16130.	1.6	71
475	Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice. Journal of Clinical Investigation, 2011, 121, 3981-3990.	3.9	307
476	Purified Mesenchymal Stem Cells Are an Efficient Source for iPS Cell Induction. PLoS ONE, 2011, 6, e17610.	1.1	53
477	Human Hepatocyte Growth Factor Promotes Functional Recovery in Primates after Spinal Cord Injury. PLoS ONE, 2011, 6, e27706.	1.1	104
478	Toward using iPS cells to treat spinal cord injury: Their safety and therapeutic efficacy. Inflammation and Regeneration, 2011, 31, 2-9.	1.5	1
479	Neural stem cells and strategies for the regeneration of the central nervous system. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2010, 86, 438-450.	1.6	51
480	Stem Cell-Like Properties of the Endometrial Side Population: Implication in Endometrial Regeneration. PLoS ONE, 2010, 5, e10387.	1.1	233
481	Transplantation of galectinâ€lâ€expressing human neural stem cells into the injured spinal cord of adult common marmosets. Journal of Neuroscience Research, 2010, 88, 1394-1405.	1.3	73
482	Generating induced pluripotent stem cells from common marmoset (<i>Callithrix jacchus</i>) fetal liver cells using defined factors, including Lin28. Genes To Cells, 2010, 15, 959-969.	0.5	120
483	Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12704-12709.	3.3	489
484	Fbxo45, a Novel Ubiquitin Ligase, Regulates Synaptic Activity. Journal of Biological Chemistry, 2010, 285, 3840-3849.	1.6	69
485	Musashi1 regulates breast tumor cell proliferation and is a prognostic indicator of poor survival. Molecular Cancer, 2010, 9, 221.	7.9	118
486	Sox10- Venus mice: a new tool for real-time labeling of neural crest lineage cells and oligodendrocytes. Molecular Brain, 2010, 3, 31.	1.3	70

#	Article	IF	CITATIONS
487	Neural RNA-Binding Protein Musashi1 Controls Midline Crossing of Precerebellar Neurons through Posttranscriptional Regulation of Robo3/Rig-1 Expression. Neuron, 2010, 67, 407-421.	3.8	66
488	Anti-IL-6-receptor antibody promotes repair of spinal cord injury by inducing microglia-dominant inflammation. Experimental Neurology, 2010, 224, 403-414.	2.0	115
489	Heart failure causes cholinergic transdifferentiation of cardiac sympathetic nerves via gp130-signaling cytokines in rodents. Journal of Clinical Investigation, 2010, 120, 408-421.	3.9	128
490	Suppression of Oct4 by Germ Cell Nuclear Factor Restricts Pluripotency and Promotes Neural Stem Cell Development in the Early Neural Lineage. Journal of Neuroscience, 2009, 29, 2113-2124.	1.7	64
491	The disruption of Sox21-mediated hair shaft cuticle differentiation causes cyclic alopecia in mice. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9292-9297.	3.3	65
492	3′â€Untranslated region of <i>doublecortin</i> mRNA is a binding target of the Musashi1 RNAâ€binding protein. FEBS Letters, 2009, 583, 2429-2434.	1,3	37
493	Neural crestâ€derived stem cells display a wide variety of characteristics. Journal of Cellular Biochemistry, 2009, 107, 1046-1052.	1.2	44
494	Generation of transgenic non-human primates with germline transmission. Nature, 2009, 459, 523-527.	13.7	675
495	Variation in the safety of induced pluripotent stem cell lines. Nature Biotechnology, 2009, 27, 743-745.	9.4	811
496	Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. Journal of Experimental Medicine, 2009, 206, 2483-2496.	4.2	715
497	Development of mesenchymal stem cells partially originate from the neural crest. Biochemical and Biophysical Research Communications, 2009, 379, 1114-1119.	1.0	244
498	Cell types to order: temporal specification of CNS stem cells. Current Opinion in Neurobiology, 2009, 19, 112-119.	2.0	214
499	Visualization of peripheral nerve degeneration and regeneration: Monitoring with diffusion tensor tractography. Neurolmage, 2009, 44, 884-892.	2.1	229
500	Roles of ES Cell-Derived Gliogenic Neural Stem/Progenitor Cells in Functional Recovery after Spinal Cord Injury. PLoS ONE, 2009, 4, e7706.	1.1	109
501	Spatiotemporal Recapitulation of Central Nervous System Development by Murine Embryonic Stem Cell-Derived Neural Stem/Progenitor Cells. Stem Cells, 2008, 26, 3086-3098.	1.4	162
502	Requirement for COUP-TFI and II in the temporal specification of neural stem cells in CNS development. Nature Neuroscience, 2008, 11, 1014-1023.	7.1	225
503	Ontogeny and Multipotency of Neural Crest-Derived Stem Cells in Mouse Bone Marrow, Dorsal Root Ganglia, and Whisker Pad. Cell Stem Cell, 2008, 2, 392-403.	5.2	347
504	Spinal cord injury: Emerging beneficial role of reactive astrocytes' migration. International Journal of Biochemistry and Cell Biology, 2008, 40, 1649-1653.	1,2	101

#	Article	IF	Citations
505	Cell-cycle-specific nestin expression coordinates with morphological changes in embryonic cortical neural progenitors. Journal of Cell Science, 2008, 121, 1204-1212.	1.2	65
506	Angiotensin II Type 1 Receptor Signaling Contributes to Synaptophysin Degradation and Neuronal Dysfunction in the Diabetic Retina. Diabetes, 2008, 57, 2191-2198.	0.3	125
507	Epigenetic regulation of neural cell differentiation plasticity in the adult mammalian brain. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18012-18017.	3.3	79
508	Neural RNA-binding protein Musashi1 inhibits translation initiation by competing with eIF4G for PABP. Journal of Cell Biology, 2008, 181, 639-653.	2.3	172
509	Introduction. Japan: its tradition and hot topics in biological sciences. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 2067-2069.	1.8	1
510	Diffusion-Tensor Neuronal Fiber Tractography and Manganese-enhanced MR Imaging of Primate Visual Pathway in the Common Marmoset: Preliminary Results. Radiology, 2008, 249, 855-864.	3.6	37
511	Noninvasive and real-time assessment of reconstructed functional human endometrium in NOD/SCID/ÂFormula immunodeficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1925-1930.	3.3	141
512	<i>In Vivo</i> Tracing of Neural Tracts in the Intact and Injured Spinal Cord of Marmosets by Diffusion Tensor Tractography. Journal of Neuroscience, 2007, 27, 11991-11998.	1.7	96
513	Side population in human uterine myometrium displays phenotypic and functional characteristics of myometrial stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18700-18705.	3.3	179
514	Impaired motor functions in mice lacking the RNA-binding protein Hzf. Neuroscience Research, 2007, 58, 183-189.	1.0	10
515	Interaction of skin tissue with nanosecond pulsed laser-induced stress wave used for gene transfection. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, ,	0.0	0
516	Two Distinct Stem Cell Lineages in Murine Bone Marrow. Stem Cells, 2007, 25, 1213-1221.	1.4	64
517	Hepatocyte growth factor promotes endogenous repair and functional recovery after spinal cord injury. Journal of Neuroscience Research, 2007, 85, 2332-2342.	1.3	144
518	Î ² -Catenin Signaling Promotes Proliferation of Progenitor Cells in the Adult Mouse Subventricular Zone. Stem Cells, 2007, 25, 2827-2836.	1.4	230
519	Expression of RNA-Binding Protein Musashi in Hair Follicle Development and Hair Cycle Progression. American Journal of Pathology, 2006, 168, 80-92.	1.9	55
520	Isolation of Multipotent Neural Crest-Derived Stem Cells from the Adult Mouse Cornea. Stem Cells, 2006, 24, 2714-2722.	1.4	178
521	Neuroprotective Effects of Angiotensin II Type 1 Receptor (AT1R) Blocker, Telmisartan, via Modulating AT1R and AT2R Signaling in Retinal Inflammation. , 2006, 47, 5545.		112
522	Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nature Medicine, 2006, 12, 829-834.	15.2	828

#	Article	IF	CITATIONS
523	A selective Sema3A inhibitor enhances regenerative responses and functional recovery of the injured spinal cord. Nature Medicine, 2006, 12, 1380-1389.	15.2	368
524	Effect of neurosphere size on the growth rate of human neural stem/progenitor cells. Journal of Neuroscience Research, 2006, 84, 1682-1691.	1.3	110
525	Improved Transfection Efficiency by the use of Lipofectamine-Modified Plasmid DNA in Laser-Induced Stress Wave-Assisted Gene Transfer: In Vitro Study. , 2006, , .		0
526	Angiogenesis Enhancement by Laser-induced Stress Waves-assisted Gene Transfer of Hepatocyte Growth Factor in Grafted Skins. , 2006, , .		1
527	Role of IL-6 in Spinal Cord Injury in a Mouse Model. Clinical Reviews in Allergy and Immunology, 2005, 28, 197-204.	2.9	69
528	Establishment of Novel Embryonic Stem Cell Lines Derived from the Common Marmoset (Callithrix) Tj ETQq0 0 0	rgBŢ /Ove	erlock 10 Tf 50
529	Chondroitinase ABC combined with neural stem/progenitor cell transplantation enhances graft cell migration and outgrowth of growth-associated protein-43-positive fibers after rat spinal cord injury. European Journal of Neuroscience, 2005, 22, 3036-3046.	1.2	151
530	Components of the transcriptional Mediator complex are required for asymmetric cell division in C. elegans. Development (Cambridge), 2005, 132, 1885-1893.	1.2	77
531	Involvement of Hu and Heterogeneous Nuclear Ribonucleoprotein K in Neuronal Differentiation through p21 mRNA Post-transcriptional Regulation. Journal of Biological Chemistry, 2005, 280, 12690-12699.	1.6	118
532	Hzf protein regulates dendritic localization and BDNF-induced translation of type 1 inositol 1,4,5-trisphosphate receptor mRNA. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17190-17195.	3.3	24
533	In vivo imaging of engrafted neural stem cells: its application in evaluating the optimal timing of transplantation for spinal cord injury. FASEB Journal, 2005, 19, 1839-1841.	0.2	213
534	Cardiac neural crest cells contribute to the dormant multipotent stem cell in the mammalian heart. Journal of Cell Biology, 2005, 170, 1135-1146.	2.3	310
535	The RNA-binding protein HuD regulates neuronal cell identity and maturation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4625-4630.	3.3	196
536	Function of RNA-binding protein Musashi-1 in stem cells. Experimental Cell Research, 2005, 306, 349-356.	1.2	356
537	Lecithinized brain-derived neurotrophic factor promotes the differentiation of embryonic stem cells in vitro and in vivo. Biochemical and Biophysical Research Communications, 2005, 328, 1051-1057.	1.0	14
538	Visualization of spatiotemporal activation of Notch signaling: Live monitoring and significance in neural development. Developmental Biology, 2005, 286, 311-325.	0.9	63
539	Serial and simultaneous PET measurement of fetal nigral transplantation in hemi-Parkinson model rats with [11C]PE2I and [11C]raclopride. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S503-S503.	2.4	0
540	Comparison between Fetal Spinal-Cord- and Forebrain-Derived Neural Stem/Progenitor Cells as a Source of Transplantation for Spinal Cord Injury. Developmental Neuroscience, 2004, 26, 275-287.	1.0	62

#	Article	IF	Citations
541	Mapping spatio-temporal activation of Notch signaling during neurogenesis and gliogenesis in the developing mouse brain. Journal of Neurochemistry, 2004, 90, 142-154.	2.1	100
542	Human neural stem/progenitor cells, expanded in long-term neurosphere culture, promote functional recovery after focal ischemia in Mongolian gerbils. Journal of Neuroscience Research, 2004, 78, 215-223.	1.3	168
543	Retinoic-acid-concentration-dependent acquisition of neural cell identity during in vitro differentiation of mouse embryonic stem cells. Developmental Biology, 2004, 275, 124-142.	0.9	302
544	Unexpectedly Efficient Homing Capacity of Purified Murine Hematopoietic Stem Cells. Immunity, 2004, 20, 87-93.	6.6	278
545	6. Stem cell biology and regeneration of the central nervous system (A4 Current treatment strategy) Tj ETQq1	1 0.784314 0.0	rgBT /Overlo
546	Identification of a putative intestinal stem cell and early lineage marker; musashi-1. Differentiation, 2003, 71, 28-41.	1.0	442
547	Expression of Tubulin Beta II in Neural Stem/Progenitor Cells and Radial Fibers During Human Fetal Brain Development. Laboratory Investigation, 2003, 83, 479-489.	1.7	40
548	Hepatocyte growth factor promotes proliferation and neuronal differentiation of neural stem cells from mouse embryos. Molecular and Cellular Neurosciences, 2003, 24, 190-197.	1.0	45
549	Introduction. Seminars in Cell and Developmental Biology, 2003, 14, 159.	2.3	15
550	Transplantation of neural stem cells into the spinal cord after injury. Seminars in Cell and Developmental Biology, 2003, 14, 191-198.	2.3	146
551	Origin of Higher Affinity to RNA of the N-terminal RNA-binding Domain than That of the C-terminal One of a Mouse Neural Protein, Musashi1, as Revealed by Comparison of Their Structures, Modes of Interaction, Surface Electrostatic Potentials, and Backbone Dynamics. Journal of Biological Chemistry, 2003, 278, 41309-41315.	1.6	27
552	RNA-binding protein Musashi family: Roles for CNS stem cells and a subpopulation of ependymal cells revealed by targeted disruption and antisense ablation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15194-15199.	3.3	320
553	Isolation and transplantation of dopaminergic neurons and neural stem cells. Parkinsonism and Related Disorders, 2002, 9, 23-28.	1.1	18
554	Neural stem cells: Progression of basic research and perspective for clinical application Keio Journal of Medicine, 2002, 51, 115-128.	0.5	58
555	Stem cell biology of the central nervous system. Journal of Neuroscience Research, 2002, 69, 698-707.	1.3	266
556	Nestin enhancer requirements for expression in normal and injured adult CNS. Journal of Neuroscience Research, 2002, 69, 784-794.	1.3	49
557	Evaluation of in vitro proliferative activity of human fetal neural stem/progenitor cells using indirect measurements of viable cells based on cellular metabolic activity. Journal of Neuroscience Research, 2002, 69, 869-879.	1.3	133
558	Musashi: a translational regulator of cell fate. Journal of Cell Science, 2002, 115, 1355-1359.	1.2	300

#	Article	IF	Citations
559	Musashi: a translational regulator of cell fate. Journal of Cell Science, 2002, 115, 1355-9.	1.2	261
560	Nestin-EGFP Transgenic Mice: Visualization of the Self-Renewal and Multipotency of CNS Stem Cells. Molecular and Cellular Neurosciences, 2001, 17, 259-273.	1.0	298
561	Murine homologs ofdeltexdefine a novel gene family involved in vertebrate Notch signaling and neurogenesis. International Journal of Developmental Neuroscience, 2001, 19, 21-35.	0.7	84
562	RNA-Binding Protein Musashi2: Developmentally Regulated Expression in Neural Precursor Cells and Subpopulations of Neurons in Mammalian CNS. Journal of Neuroscience, 2001, 21, 8091-8107.	1.7	233
563	Expression of mouseigf2 mRNA-binding protein 3 and its implications for the developing central nervous system. Journal of Neuroscience Research, 2001, 64, 132-143.	1.3	51
564	Direct isolation of committed neuronal progenitor cells from transgenic mice coexpressing spectrally distinct fluorescent proteins regulated by stage-specific neural promoters. Journal of Neuroscience Research, 2001, 65, 220-227.	1.3	60
565	High-yield selection and extraction of two promoter-defined phenotypes of neural stem cells from the fetal human brain. Nature Biotechnology, 2001, 19, 843-850.	9.4	171
566	Translational repression determines a neuronal potential in Drosophila asymmetric cell division. Nature, 2001, 411, 94-98.	13.7	169
567	Musashi1, an evolutionarily conserved neural RNA-binding protein, is a versatile marker of human glioma cells in determining their cellular origin, malignancy, and proliferative activity. Differentiation, 2001, 68, 141-152.	1.0	124
568	Brain from bone: Efficient "meta-differentiation―of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent. Differentiation, 2001, 68, 235-244.	1.0	292
569	The Neural RNA-Binding Protein Musashi1 Translationally Regulates Mammalian numb Gene Expression by Interacting with Its mRNA. Molecular and Cellular Biology, 2001, 21, 3888-3900.	1.1	433
570	GAL4/UAS-WGA system as a powerful tool for tracingDrosophila transsynaptic neural pathways. Journal of Neuroscience Research, 2000, 59, 94-99.	1.3	38
571	MSI-1, a neural RNA-binding protein, is involved in male mating behaviour inCaenorhabditis elegans. Genes To Cells, 2000, 5, 885-895.	0.5	43
572	In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nature Medicine, 2000, 6, 271-277.	15.2	539
573	GAL4/UAS-WGA system as a powerful tool for tracing Drosophila transsynaptic neural pathways. , 2000, 59, 94.		1
574	GAL4UASWGA system as a powerful tool for tracing Drosophila transsynaptic neural pathways. Journal of Neuroscience Research, 2000, 59, 94-99.	1.3	1
575	Mutations Modulating the Argos-Regulated Signaling Pathway in Drosophila Eye Development. Genetics, 2000, 154, 1639-1648.	1.2	8
576	Musashi and Seven in absentia downregulate Tramtrack through distinct mechanisms in Drosophila eye development. Mechanisms of Development, 1999, 87, 93-101.	1.7	40

#	Article	IF	CITATIONS
577	Structure, backbone dynamics and interactions with RNA of the C-terminal RNA-binding domain of a mouse neural RNA-binding protein, Musashil 1 lEdited by P. E. Wright. Journal of Molecular Biology, 1999, 287, 315-330.	2.0	49
578	Argos induces programmed cell death in the developing Drosophila eye by inhibition of the Ras pathway. Cell Death and Differentiation, 1998, 5, 262-270.	5.0	51
579	Fibroblast growth factor-2/brain-derived neurotrophic factor?associated maturation of new neurons generated from adult human subependymal cells. Annals of Neurology, 1998, 43, 576-585.	2.8	259
580	Expression of Neural RNA-Binding Proteins in the Postnatal CNS: Implications of Their Roles in Neuronal and Glial Cell Development. Journal of Neuroscience, 1997, 17, 8300-8312.	1.7	254
581	ICE/CEDâ€3 Family Executes Oligodendrocyte Apoptosis by Tumor Necrosis Factor. Journal of Neurochemistry, 1997, 69, 10-20.	2.1	130
582	Mouse-Musashi-1, a Neural RNA-Binding Protein Highly Enriched in the Mammalian CNS Stem Cell. Developmental Biology, 1996, 176, 230-242.	0.9	533
583	Glial cell degeneration and hypomyelination caused by overexpression of myelin proteolipid protein gene. Neuron, 1994, 13, 427-442.	3.8	257
584	Musashi, a neural RNA-binding protein required for drosophila adult external sensory organ development. Neuron, 1994, 13, 67-81.	3.8	366
585	Chimeric and Molecular Genetic Analysis of Myelin-Deficient (Shiverer and Mld) Mutant Mice. Annals of the New York Academy of Sciences, 1990, 605, 166-182.	1.8	3
586	Inefficient Transcription of the Myelin Basic Protein Gene Possibly Causes Hypomyelination in Myelin-Deficient Mutant Mice. Journal of Neurochemistry, 1987, 48, 470-476.	2.1	59
587	Dysmyelination in <i>Shiverer</i> and <i>Myelin Deficient</i> (<i>mld</i>) Mutant Mice. Proceedings of the Japanese Association of Animal Models for Human Diseases, 1985, 1, 4-9.	0.0	0
588	Molecular Genetic Analysis of Myelin-Deficient Mice: Shiverer Mutant Mice Show Deletion in Gene(s) Coding for Myelin Basic Protein. Journal of Neurochemistry, 1985, 44, 692-696.	2.1	99
589	<scp>3D</scp> imaging of supraspinal inputs to the thoracic and lumbar spinal cord mapped by retrograde tracing and lightâ€sheet microscopy. Journal of Neurochemistry, 0, , .	2.1	3