
Vladimir Mironov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11885093/publications.pdf Version: 2024-02-01

VIADIMIR MIRONOV

#	Article	IF	CITATIONS
1	What can biofabrication do for space and what can space do for biofabrication?. Trends in Biotechnology, 2022, 40, 398-411.	4.9	23
2	In situ bioprinting – Bioprinting from benchside to bedside?. Acta Biomaterialia, 2020, 101, 14-25.	4.1	168
3	The bioprinting roadmap. Biofabrication, 2020, 12, 022002.	3.7	291
4	Advances in Hybrid Fabrication toward Hierarchical Tissue Constructs. Advanced Science, 2020, 7, 1902953.	5.6	86
5	Using Sacrificial Cell Spheroids for the Bioprinting of Perfusable 3D Tissue and Organ Constructs: A Computational Study. Computational and Mathematical Methods in Medicine, 2019, 2019, 1-9.	0.7	12
6	The Synergy of Scaffold-Based and Scaffold-Free Tissue Engineering Strategies. Trends in Biotechnology, 2018, 36, 348-357.	4.9	231
7	Commercial 3D Bioprinters. , 2018, , 535-549.		5
8	Commercial 3D Bioprinters. , 2018, , 1-16.		2
9	From nano to macro: Enabling Nanotechnologies for Human Organ Biofabrication (Electrospun) Tj ETQq1 1 0.784 IJAMB, 2018, 1, 41.	4314 rgBT 0.1	/Overlock 10 5
10	3D bioprinting of the kidney—hype or hope?. AIMS Cell and Tissue Engineering, 2018, 2, 119-162.	0.4	19
11	Successful Low-Cost Scaffold-Free Cartilage Tissue Engineering Using Human Cartilage Progenitor Cell Spheroids Formed by Micromolded Nonadhesive Hydrogel. Stem Cells International, 2017, 2017, 1-11.	1.2	28
12	Design and Implementation of Novel Multifunctional 3D Bioprinter. 3D Printing and Additive Manufacturing, 2016, 3, 64-68.	1.4	14
13	Delivery of Human Adipose Stem Cells Spheroids into Lockyballs. PLoS ONE, 2016, 11, e0166073.	1.1	36
14	Patterning of tissue spheroids biofabricated from human fibroblasts on the surface of electrospun polyurethane matrix using 3D bioprinter. International Journal of Bioprinting, 2016, 2, .	1.7	18
15	Organ Printing as an Information Technology. Procedia Engineering, 2015, 110, 151-158.	1.2	21
16	Burr-like, laser-made 3D microscaffolds for tissue spheroid encagement. Biointerphases, 2015, 10, 021011.	0.6	43
17	Direct laser writing: Principles and materials for scaffold 3D printing. Microelectronic Engineering, 2015, 132, 83-89.	1.1	272
18	Dynamics of cell aggregates fusion: Experiments and simulations. Physica A: Statistical Mechanics and Its Applications, 2014, 395, 247-254.	1.2	20

VLADIMIR MIRONOV

#	Article	IF	CITATIONS
19	The fusion of tissue spheroids attached to pre-stretched electrospun polyurethane scaffolds. Journal of Tissue Engineering, 2014, 5, 204173141455656.	2.3	32
20	Age-related analysis of structural, biochemical and mechanical properties of the porcine mitral heart valve leaflets. Connective Tissue Research, 2013, 54, 394-402.	1.1	18
21	Virtual Biofabrication Line. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 289-294.	0.4	3
22	Design of vascular tree for organ bioprinting. Computer Aided Chemical Engineering, 2013, 32, 151-156.	0.3	3
23	Design, physical prototyping and initial characterisation of â€~lockyballs'. Virtual and Physical Prototyping, 2012, 7, 287-301.	5.3	32
24	Engineering 3D cell-culture matrices: multiphoton processing technologies for biological and tissue engineering applications. Expert Review of Medical Devices, 2012, 9, 613-633.	1.4	140
25	Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms. Journal of Biomedical Optics, 2012, 17, 1.	1.4	117
26	Nanotechnological Strategies for Biofabrication of Human Organs. Journal of Nanotechnology, 2012, 2012, 1-10.	1.5	14
27	Modeling fusion of cellular aggregates in biofabrication using phase field theories. Journal of Theoretical Biology, 2012, 303, 110-118.	0.8	53
28	Recent Patents and Trends in Bioprinting. Recent Patents on Biomedical Engineering, 2011, 4, 26-32.	0.5	2
29	Organ printing: from bioprinter to organ biofabrication line. Current Opinion in Biotechnology, 2011, 22, 667-673.	3.3	291
30	Biofabrication Strategies for Tissue Engineering. Computational Methods in Applied Sciences (Springer), 2011, , 137-176.	0.1	24
31	Computational modeling of epithelial–mesenchymal transformations. BioSystems, 2010, 100, 23-30.	0.9	21
32	Tissue spheroid fusion-based in vitro screening assays for analysis of tissue maturation. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 659-664.	1.3	62
33	Towards organ printing: engineering an intra-organ branched vascular tree. Expert Opinion on Biological Therapy, 2010, 10, 409-420.	1.4	203
34	Organ printing: Tissue spheroids as building blocks. Biomaterials, 2009, 30, 2164-2174.	5.7	1,106
35	Rapid biofabrication of tubular tissue constructs by centrifugal casting in a decellularized natural scaffold with laser-machined micropores. Journal of Materials Science: Materials in Medicine, 2009, 20, 329-337.	1.7	39
36	Emergence of clinical vascular tissue engineering. Lancet, The, 2009, 373, 1402-1404.	6.3	12

VLADIMIR MIRONOV

#	Article	IF	CITATIONS
37	Relating cell and tissue mechanics: Implications and applications. Developmental Dynamics, 2008, 237, 2438-2449.	0.8	72
38	VEGFâ€mediated fusion in the generation of uniluminal vascular spheroids. Developmental Dynamics, 2008, 237, 2918-2925.	0.8	36
39	Nanotechnology in vascular tissue engineering: from nanoscaffolding towards rapid vessel biofabrication. Trends in Biotechnology, 2008, 26, 338-344.	4.9	129
40	Bioreactor-free tissue engineering: directed tissue assembly by centrifugal casting. Expert Opinion on Biological Therapy, 2008, 8, 143-152.	1.4	20
41	Tissue Engineering by Self-Assembly of Cells Printed into Topologically Defined Structures. Tissue Engineering - Part A, 2008, 14, 413-421.	1.6	337
42	Organ printing: promises and challenges. Regenerative Medicine, 2008, 3, 93-103.	0.8	222
43	Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues. Journal of Cellular Biochemistry, 2007, 101, 695-711.	1.2	530
44	Bioprinting living structures. Journal of Materials Chemistry, 2007, 17, 2054.	6.7	114
45	Review: Bioprinting: A Beginning. Tissue Engineering, 2006, 12, 631-634.	4.9	286
46	Research Project: Charleston Bioengineered Kidney Project. Biotechnology Journal, 2006, 1, 903-905.	1.8	17
47	Tannic acid mimicking dendrimers as small intestine submucosa stabilizing nanomordants. Biomaterials, 2006, 27, 745-751.	5.7	12
48	Toward Human Organ Printing: Charleston Bioprinting Symposium. ASAIO Journal, 2006, 52, e27-e30.	0.9	16
49	Cardiovascular Tissue Engineering I. Perfusion Bioreactors: A Review. Journal of Long-Term Effects of Medical Implants, 2006, 16, 111-130.	0.2	17
50	Fabrication of tubular tissue constructs by centrifugal casting of cells suspended in an in situ crosslinkable hyaluronan-gelatin hydrogel. Biomaterials, 2005, 26, 7628-7635.	5.7	88
51	The Second International Workshop on Bioprinting, Biopatterning and Bioassembly. Expert Opinion on Biological Therapy, 2005, 5, 1111-1115.	1.4	18
52	Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2864-2869.	3.3	344
53	Organ printing: fiction or science. Biorheology, 2004, 41, 371-5.	1.2	41
54	Organ printing: computer-aided jet-based 3D tissue engineering. Trends in Biotechnology, 2003, 21, 157-161.	4.9	1,127

VLADIMIR MIRONOV

#	Article	IF	CITATIONS
55	Cell and organ printing 2: Fusion of cell aggregates in three-dimensional gels. The Anatomical Record, 2003, 272A, 497-502.	2.3	306
56	Printing technology to produce living tissue. Expert Opinion on Biological Therapy, 2003, 3, 701-704.	1.4	74
57	Perfusion Bioreactor for Vascular Tissue Engineering with Capacities for Longitudinal Stretch. Journal of Craniofacial Surgery, 2003, 14, 340-347.	0.3	49
58	Anatomy of tissue engineering. The Anatomical Record, 2001, 263, 335-335.	2.3	4
59	Architectural alterations in rat cerebral microvessels after hypobaric hypoxia. Brain Research, 1994, 660, 73-80.	1.1	69
60	Tissue Engineering by Self-Assembly of Cells Printed into Topologically Defined Structures. Tissue Engineering, 0, , 110306233438005.	4.9	200