Soeren W Gersting

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1188508/publications.pdf

Version: 2024-02-01

394390 395678 1,966 34 19 33 citations g-index h-index papers 36 36 36 3204 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	IL-37 requires the receptors IL-18Rα and IL-1R8 (SIGIRR) to carry out its multifaceted anti-inflammatory program upon innate signal transduction. Nature Immunology, 2015, 16, 354-365.	14.5	352
2	Insights into the mechanism of magnetofection using PEI-based magnetofectins for gene transfer. Journal of Gene Medicine, 2004, 6, 923-936.	2.8	266
3	Advances in magnetofection—magnetically guided nucleic acid delivery. Journal of Magnetism and Magnetic Materials, 2005, 293, 501-508.	2.3	150
4	Rad50-CARD9 interactions link cytosolic DNA sensing to IL- $1\hat{l}^2$ production. Nature Immunology, 2014, 15, 538-545.	14.5	132
5	Gene delivery to respiratory epithelial cells by magnetofection. Journal of Gene Medicine, 2004, 6, 913-922.	2.8	112
6	CLPB Mutations Cause 3-Methylglutaconic Aciduria, Progressive Brain Atrophy, Intellectual Disability, Congenital Neutropenia, Cataracts, Movement Disorder. American Journal of Human Genetics, 2015, 96, 245-257.	6.2	111
7	Loss of Function in Phenylketonuria Is Caused by Impaired Molecular Motions and Conformational Instability. American Journal of Human Genetics, 2008, 83, 5-17.	6.2	108
8	Innovative strategies to treat protein misfolding in inborn errors of metabolism: pharmacological chaperones and proteostasis regulators. Journal of Inherited Metabolic Disease, 2014, 37, 505-523.	3.6	89
9	Interaction of liposomal and polycationic transfection complexes with pulmonary surfactant. Journal of Gene Medicine, 1999, 1, 331-340.	2.8	79
10	The interplay between genotype, metabolic state and cofactor treatment governs phenylalanine hydroxylase function and drug response. Human Molecular Genetics, 2011, 20, 2628-2641.	2.9	65
11	Interaction of bronchoalveolar lavage fluid with polyplexes and lipoplexes: analysing the role of proteins and glycoproteins. Journal of Gene Medicine, 2003, 5, 49-60.	2.8	60
12	Novel pharmacological chaperones that correct phenylketonuria in mice. Human Molecular Genetics, 2012, 21, 1877-1887.	2.9	58
13	Protein misfolding is the molecular mechanism underlying MCADD identified in newborn screening. Human Molecular Genetics, 2009, 18, 1612-1623.	2.9	50
14	Pah enu1 is a mouse model for tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency and promotes analysis of the pharmacological chaperone mechanism in vivo. Human Molecular Genetics, 2010, 19, 2039-2049.	2.9	49
15	Mapping the functional landscape of frequent <i>phenylalanine hydroxylase</i> (<i>PAH</i>) genotypes promotes personalised medicine in phenylketonuria. Journal of Medical Genetics, 2015, 52, 175-185.	3.2	37
16	Identification of a New Fatty Acid Synthesis-Transport Machinery at the Peroxisomal Membrane*. Journal of Biological Chemistry, 2012, 287, 210-221.	3.4	31
17	Phenylketonuria as a model for protein misfolding diseases and for the development of next generation orphan drugs for patients with inborn errors of metabolism. Journal of Inherited Metabolic Disease, 2010, 33, 649-658.	3.6	30
18	Activation of Phenylalanine Hydroxylase Induces Positive Cooperativity toward the Natural Cofactor. Journal of Biological Chemistry, 2010, 285, 30686-30697.	3.4	29

#	Article	IF	CITATIONS
19	Varicella Zoster Virus ORF25 Gene Product: An Essential Hub Protein Linking Encapsidation Proteins and the Nuclear Egress Complex. Journal of Proteome Research, 2011, 10, 5374-5382.	3.7	22
20	Inborn errors of metabolism and the human interactome: a systems medicine approach. Journal of Inherited Metabolic Disease, 2018, 41, 285-296.	3.6	17
21	The Domain-Specific and Temperature-Dependent Protein Misfolding Phenotype of Variant Medium-Chain acyl-CoA Dehydrogenase. PLoS ONE, 2014, 9, e93852.	2.5	17
22	An Interactive Network of Elastase, Secretases, and PAR-2 Protein Regulates CXCR1 Receptor Surface Expression on Neutrophils. Journal of Biological Chemistry, 2014, 289, 20516-20525.	3.4	16
23	Disease-causing mutations affecting surface residues of mitochondrial glutaryl-CoA dehydrogenase impair stability, heteromeric complex formation and mitochondria architecture. Human Molecular Genetics, 2017, 26, ddw411.	2.9	14
24	New insights into tetrahydrobiopterin pharmacodynamics from Pahenu1/2, a mouse model for compound heterozygous tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. Biochemical Pharmacology, 2010, 80, 1563-1571.	4.4	13
25	Secondary BH4 deficiency links protein homeostasis to regulation of phenylalanine metabolism. Human Molecular Genetics, 2018, 27, 1732-1742.	2.9	12
26	Bioluminescence Resonance Energy Transfer: An Emerging Tool for the Detection of Protein–Protein Interaction in Living Cells. Methods in Molecular Biology, 2012, 815, 253-263.	0.9	12
27	Specific CD4+ T Cell Responses to Ancestral SARS-CoV-2 in Children Increase With Age and Show Cross-Reactivity to Beta Variant. Frontiers in Immunology, 0, 13, .	4.8	8
28	Isoform-specific domain organization determines conformation and function of the peroxisomal biogenesis factor PEX26. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 518-531.	4.1	7
29	Multiplexed complexome profiling using tandem mass tags. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148448.	1.0	6
30	Homooligomerization of ABCA3 and its functional significance. International Journal of Molecular Medicine, 2016, 38, 558-566.	4.0	3
31	iBRET Screen of the ABCD1 Peroxisomal Network and Mutation-Induced Network Perturbations. Journal of Proteome Research, 2021, 20, 4366-4380.	3.7	3
32	Phenotypic analysis of the pediatric immune response to SARSâ \in CoV â \in 2 by flow cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, , .	1.5	3
33	Quantification of mevalonate-5-phosphate using UPLC-MS/MS for determination of mevalonate kinase activity. Clinical Biochemistry, 2015, 48, 781-787.	1.9	2
34	Edgetic Perturbations Contribute to Phenotypic Variability in PEX26 Deficiency. Frontiers in Genetics, 2021, 12, 726174.	2.3	2