Daniel J Lew

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1188461/publications.pdf

Version: 2024-02-01

87	6,130	40	75
papers	citations	h-index	g-index
97	97	97	3262
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Chemotropism and Cell-Cell Fusion in Fungi. Microbiology and Molecular Biology Reviews, 2022, 86, e0016521.	2.9	7
2	Orientation of Cell Polarity by Chemical Gradients. Annual Review of Biophysics, 2022, 51, 431-451.	4. 5	16
3	Pheromone Guidance of Polarity Site Movement in Yeast. Biomolecules, 2022, 12, 502.	1.8	1
4	Mechanisms that ensure monogamous mating inSaccharomyces cerevisiae. Molecular Biology of the Cell, 2021, 32, 638-644.	0.9	6
5	How cells determine the number of polarity sites. ELife, 2021, 10, .	2.8	15
6	Chemotactic movement of a polarity site enables yeast cells to find their mates. Proceedings of the National Academy of Sciences of the United States of America, 2021 , 118 , .	3.3	15
7	Exploratory polarization facilitates mating partner selection in <i>Saccharomyces cerevisiae</i> Molecular Biology of the Cell, 2021, 32, 1048-1063.	0.9	12
8	A novel stochastic simulation approach enables exploration of mechanisms for regulating polarity site movement. PLoS Computational Biology, 2021, 17, e1008525.	1.5	8
9	How Diffusion Impacts Cortical Protein Distribution in Yeasts. Cells, 2020, 9, 1113.	1.8	3
10	Mechanistic insights into actin-driven polarity site movement in yeast. Molecular Biology of the Cell, 2020, 31, 1085-1102.	0.9	22
11	Ratiometric GPCR signaling enables directional sensing in yeast. PLoS Biology, 2019, 17, e3000484.	2.6	27
12	Unconventional Cell Division Cycles from Marine-Derived Yeasts. Current Biology, 2019, 29, 3439-3456.e5.	1.8	37
13	Cell-cycle control of cell polarity in yeast. Journal of Cell Biology, 2019, 218, 171-189.	2.3	41
14	Polarity establishment by Cdc42: Key roles for positive feedback and differential mobility. Small GTPases, 2019, 10, 130-137.	0.7	53
15	Ratiometric GPCR signaling enables directional sensing in yeast. , 2019, 17, e3000484.		O
16	Ratiometric GPCR signaling enables directional sensing in yeast., 2019, 17, e3000484.		0
17	Ratiometric GPCR signaling enables directional sensing in yeast. , 2019, 17, e3000484.		О
18	Ratiometric GPCR signaling enables directional sensing in yeast., 2019, 17, e3000484.		0

#	Article	IF	CITATIONS
19	Ratiometric GPCR signaling enables directional sensing in yeast. , 2019, 17, e3000484.		О
20	Ratiometric GPCR signaling enables directional sensing in yeast., 2019, 17, e3000484.		0
21	A role for Gic1 and Gic2 in Cdc42 polarization at elevated temperature. PLoS ONE, 2018, 13, e0200863.	1.1	8
22	Principles that govern competition or co-existence in Rho-GTPase driven polarization. PLoS Computational Biology, 2018, 14, e1006095.	1.5	63
23	Mating in wild yeast: delayed interest in sex after spore germination. Molecular Biology of the Cell, 2018, 29, 3119-3127.	0.9	19
24	Temporal regulation of morphogenetic events in <i>Saccharomyces cerevisiae</i> . Molecular Biology of the Cell, 2018, 29, 2069-2083.	0.9	27
25	How do cells know what shape they are?. Current Genetics, 2017, 63, 75-77.	0.8	18
26	Cell Polarity in Yeast. Annual Review of Cell and Developmental Biology, 2017, 33, 77-101.	4.0	179
27	Parallel Actin-Independent Recycling Pathways Polarize Cdc42 in Budding Yeast. Current Biology, 2016, 26, 2114-2126.	1.8	37
28	Imaging Polarization in Budding Yeast. Methods in Molecular Biology, 2016, 1407, 13-23.	0.4	2
29	Sensing a bud in the yeast morphogenesis checkpoint: a role for Elm1. Molecular Biology of the Cell, 2016, 27, 1764-1775.	0.9	26
30	Polarity establishment requires localized activation of Cdc42. Journal of Cell Biology, 2015, 211, 19-26.	2.3	50
31	To avoid a mating mishap, yeast focus and communicate. Journal of Cell Biology, 2015, 208, 867-868.	2.3	1
32	Dendritic spine geometry can localize GTPase signaling in neurons. Molecular Biology of the Cell, 2015, 26, 4171-4181.	0.9	25
33	Role of Polarized G Protein Signaling in Tracking Pheromone Gradients. Developmental Cell, 2015, 35, 471-482.	3.1	54
34	Role of competition between polarity sites in establishing a unique front. ELife, 2015, 4, .	2.8	56
35	Inhibitory GEF Phosphorylation Provides Negative Feedback in the Yeast Polarity Circuit. Current Biology, 2014, 24, 753-759.	1.8	75
36	Cell Polarity: Netrin Calms an Excitable System. Current Biology, 2014, 24, R1050-R1052.	1.8	4

#	Article	IF	CITATIONS
37	Beyond symmetry-breaking: competition and negative feedback in GTPase regulation. Trends in Cell Biology, 2013, 23, 476-483.	3.6	89
38	Tracking Shallow Chemical Gradients by Actin-Driven Wandering of the Polarization Site. Current Biology, 2013, 23, 32-41.	1.8	103
39	Inhibition of Cdc42 during mitotic exit is required for cytokinesis. Journal of Cell Biology, 2013, 202, 231-240.	2.3	74
40	Interaction between bud-site selection and polarity-establishment machineries in budding yeast. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130006.	1.8	25
41	Feedback control of Swe1p degradation in the yeast morphogenesis checkpoint. Molecular Biology of the Cell, 2013, 24, 914-922.	0.9	19
42	Roles of Hsl1p and Hsl7p in Swe1p Degradation: beyond Septin Tethering. Eukaryotic Cell, 2012, 11, 1496-1502.	3.4	12
43	Mechanistic mathematical model of polarity in yeast. Molecular Biology of the Cell, 2012, 23, 1998-2013.	0.9	77
44	An <i>MBoC</i> Favorite: Cytokinesis depends on the motor domains of myosin-II in fission yeast but not in budding yeast. Molecular Biology of the Cell, 2012, 23, 1608-1608.	0.9	0
45	Cdc42p regulation of the yeast formin Bni1p mediated by the effector Gic2p. Molecular Biology of the Cell, 2012, 23, 3814-3826.	0.9	38
46	Negative Feedback Enhances Robustness in the Yeast Polarity Establishment Circuit. Cell, 2012, 149, 322-333.	13.5	192
47	Morphogenesis and the Cell Cycle. Genetics, 2012, 190, 51-77.	1.2	135
48	Symmetry breaking and the establishment of cell polarity in budding yeast. Current Opinion in Genetics and Development, 2011, 21, 740-746.	1.5	111
49	Modeling Vesicle Traffic Reveals Unexpected Consequences for Cdc42p-Mediated Polarity Establishment. Current Biology, 2011, 21, 184-194.	1.8	111
50	Dynamics of septin ring and collar formation in <i>Saccharomyces cerevisiae</i> . Biological Chemistry, 2011, 392, 689-697.	1.2	22
51	Molecular Dissection of the Checkpoint Kinase Hsl1p. Molecular Biology of the Cell, 2009, 20, 1926-1936.	0.9	17
52	Cell structure and dynamics. Current Opinion in Cell Biology, 2009, 21, 1-3.	2.6	41
53	Singularity in Polarization: Rewiring Yeast Cells to Make Two Buds. Cell, 2009, 139, 731-743.	13.5	167
54	IP7 guards the CDK gate. Nature Chemical Biology, 2008, 4, 16-17.	3.9	16

#	Article	IF	CITATIONS
55	Symmetry-Breaking Polarization Driven by a Cdc42p GEF-PAK Complex. Current Biology, 2008, 18, 1719-1726.	1.8	218
56	Nucleocytoplasmic Trafficking of G2/M Regulators in Yeast. Molecular Biology of the Cell, 2008, 19, 4006-4018.	0.9	29
57	The Checkpoint Kinase Hsl1p Is Activated by Elm1p-dependent Phosphorylation. Molecular Biology of the Cell, 2008, 19, 4675-4686.	0.9	35
58	Adjacent positioning of cellular structures enabled by a Cdc42 GTPase-activating protein–mediated zone of inhibition. Journal of Cell Biology, 2007, 179, 1375-1384.	2.3	106
59	Microtubule Organization: Cell Shape Is Destiny. Current Biology, 2007, 17, R249-R251.	1.8	5
60	Differential Susceptibility of Yeast S and M Phase CDK Complexes to Inhibitory Tyrosine Phosphorylation. Current Biology, 2007, 17, 1181-1189.	1.8	39
61	Eavesdropping on the cytoskeleton: progress and controversy in the yeast morphogenesis checkpoint. Current Opinion in Microbiology, 2006, 9, 540-546.	2.3	69
62	Swelp Responds to Cytoskeletal Perturbation, Not Bud Size, in S. cerevisiae. Current Biology, 2005, 15, 2190-2198.	1.8	41
63	Yeast Polarity: Negative Feedback Shifts the Focus. Current Biology, 2005, 15, R994-R996.	1.8	5
64	Interplay between septin organization, cell cycle and cell shape in yeast. Journal of Cell Science, 2005, 118, 1617-1628.	1.2	116
65	Opposing Roles for Actin in Cdc42p Polarization. Molecular Biology of the Cell, 2005, 16, 1296-1304.	0.9	69
66	Polarity establishment in yeast. Journal of Cell Science, 2004, 117, 2169-2171.	1.2	58
67	Genetic Interactions among Regulators of Septin Organization. Eukaryotic Cell, 2004, 3, 847-854.	3.4	47
68	The morphogenesis checkpoint: how yeast cells watch their figures. Current Opinion in Cell Biology, 2003, 15, 648-653.	2.6	162
69	Scaffold-mediated symmetry breaking by Cdc42p. Nature Cell Biology, 2003, 5, 1062-1070.	4.6	248
70	The Spindle Assembly and Spindle Position Checkpoints. Annual Review of Genetics, 2003, 37, 251-282.	3.2	236
71	A Monitor for Bud Emergence in the Yeast Morphogenesis Checkpoint. Molecular Biology of the Cell, 2003, 14, 3280-3291.	0.9	64
72	Septin ring assembly involves cycles of GTP loading and hydrolysis by Cdc42p. Journal of Cell Biology, 2002, 156, 315-326.	2.3	170

#	Article	IF	CITATIONS
73	Determinants of Swe1p Degradation inSaccharomyces cerevisiae. Molecular Biology of the Cell, 2002, 13, 3560-3575.	0.9	72
74	The Rho-GAP Bem2p plays a GAP-independent role in the morphogenesis checkpoint. EMBO Journal, 2002, 21, 4012-4025.	3.5	36
75	The septin cortex at the yeast mother–bud neck. Current Opinion in Microbiology, 2001, 4, 681-689.	2.3	304
76	A role for the Pkc1p/Mpk1p kinase cascade in the morphogenesis checkpoint. Nature Cell Biology, 2001, 3, 417-420.	4.6	133
77	Yeast Cdc42 functions at a late step in exocytosis, specifically during polarized growth of the emerging bud. Journal of Cell Biology, 2001, 155, 581-592.	2.3	151
78	Isolation and Characterization of Effector-Loop Mutants of <i>CDC42</i> ii Yeast. Molecular Biology of the Cell, 2001, 12, 1239-1255.	0.9	53
79	Assembly of Scaffold-mediated Complexes Containing Cdc42p, the Exchange Factor Cdc24p, and the Effector Cla4p Required for Cell Cycle-regulated Phosphorylation of Cdc24p. Journal of Biological Chemistry, 2001, 276, 7176-7186.	1.6	186
80	Role of Cdc42p in Pheromone-Stimulated Signal Transduction in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2000, 20, 7559-7571.	1.1	75
81	Septin-Dependent Assembly of a Cell Cycle-Regulatory Module in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2000, 20, 4049-4061.	1.1	250
82	Dynamic Positioning of Mitotic Spindles in Yeast:. Molecular Biology of the Cell, 2000, 11, 3949-3961.	0.9	150
83	Cell-cycle checkpoints that ensure coordination between nuclear and cytoplasmic events in Saccharomyces cerevisiae. Current Opinion in Genetics and Development, 2000, 10, 47-53.	1.5	100
84	Phosphorylation-Independent Inhibition of Cdc28p by the Tyrosine Kinase Swe1p in the Morphogenesis Checkpoint. Molecular and Cellular Biology, 1999, 19, 5981-5990.	1.1	67
85	The Morphogenesis Checkpoint in <i>Saccharomyces cerevisiae</i> : Cell Cycle Control of Swe1p Degradation by Hsl1p and Hsl7p. Molecular and Cellular Biology, 1999, 19, 6929-6939.	1.1	156
86	A Morphogenesis Checkpoint Monitors the Actin Cytoskeleton in Yeast. Journal of Cell Biology, 1998, 142, 1487-1499.	2.3	143
87	Involvement of an Actomyosin Contractile Ring in Saccharomyces cerevisiae Cytokinesis. Journal of Cell Biology, 1998, 142, 1301-1312.	2.3	372