Robin Babu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11882543/publications.pdf Version: 2024-02-01

ROBIN RABIL

#	Article	IF	CITATIONS
1	Room temperature CO2 fixation via cyclic carbonate synthesis over vanadium-MOF catalysts. Korean Journal of Chemical Engineering, 2019, 36, 643-649.	1.2	8
2	Cycloaddition of CO 2 with epoxides by using an amino-acid-based Cu(II)–tryptophan MOF catalyst. Chinese Journal of Catalysis, 2018, 39, 63-70.	6.9	45
3	Zirconium-based isoreticular metal-organic frameworks for CO2 fixation via cyclic carbonate synthesis. Korean Journal of Chemical Engineering, 2018, 35, 438-444.	1.2	19
4	Bifunctional Pyridiniumâ€Based Ionicâ€Liquidâ€Immobilized Diindium Tris(diphenic acid) Bis(1,10â€phenanthroline) for CO ₂ Fixation. ChemSusChem, 2018, 11, 924-932.	3.6	32
5	A room temperature synthesizable zeolitic imidazolium framework catalyst for the solvent-free synthesis of cyclic carbonates. Journal of CO2 Utilization, 2018, 25, 6-13.	3.3	29
6	Microwave-induced synthesis of a bimetallic charge-transfer metal organic framework: a promising host for the chemical fixation of CO ₂ . Catalysis Science and Technology, 2018, 8, 591-600.	2.1	79
7	Cycloaddition of CO 2 and propylene oxide by using M (HBTC)(4,4′-bipy)·3DMF (M = Ni, Co, Zn) metal-organic frameworks. Chinese Journal of Catalysis, 2018, 39, 1311-1319.	6.9	13
8	Catalytic performance of metal azolate frameworks in the solventless synthesis of cyclic carbonates from CO 2 and epoxides. Applied Catalysis A: General, 2017, 538, 59-65.	2.2	20
9	Aqueous microwave-assisted synthesis of non-interpenetrated metal-organic framework for room temperature cycloaddition of CO 2 and epoxides. Applied Catalysis A: General, 2017, 544, 126-136.	2.2	40
10	Inverse relationship of dimensionality and catalytic activity in CO ₂ transformation: a systematic investigation by comparing multidimensional metal–organic frameworks. Journal of Materials Chemistry A, 2017, 5, 15961-15969.	5.2	57
11	A solid solution zeolitic imidazolate framework as a room temperature efficient catalyst for the chemical fixation of CO ₂ . Green Chemistry, 2016, 18, 6349-6356.	4.6	118
12	Rapid, Microwave-Assisted Synthesis of Cubic, Three-Dimensional, Highly Porous MOF-205 for Room Temperature CO ₂ Fixation via Cyclic Carbonate Synthesis. ACS Applied Materials & Interfaces, 2016, 8, 33723-33731.	4.0	146
13	A computational study of the mechanistic insights into base catalysed synthesis of cyclic carbonates from CO ₂ : bicarbonate anion as an active species. Catalysis Science and Technology, 2016, 6, 3997-4004.	2.1	37
14	lonic liquid tethered post functionalized ZIF-90 framework for the cycloaddition of propylene oxide and CO ₂ . Green Chemistry, 2016, 18, 2479-2487.	4.6	174
15	A sustainable protocol for the facile synthesis of zinc-glutamate MOF: an efficient catalyst for room temperature CO ₂ fixation reactions under wet conditions. Chemical Communications, 2016, 52, 280-283.	2.2	140
16	A room temperature synthesizable and environmental friendly heterogeneous ZIF-67 catalyst for the solvent less and co-catalyst free synthesis of cyclic carbonates. Applied Catalysis B: Environmental, 2016, 182, 562-569.	10.8	175
17	Dual-porous metal organic framework for room temperature CO ₂ fixation via cyclic carbonate synthesis. Green Chemistry, 2016, 18, 232-242.	4.6	220
18	An lcy-topology amino acid MOF as eco-friendly catalyst for cyclic carbonate synthesis from CO ₂ : Structure-DFT corroborated study. Journal of Materials Chemistry A, 2015, 3, 22636-22647.	5.2	106

#	Article	IF	CITATIONS
19	Advancements in the Conversion of Carbon Dioxide to Cyclic Carbonates Using Metal Organic Frameworks as Catalysts. Catalysis Surveys From Asia, 2015, 19, 223-235.	1.0	101