
Shin-ichi Oka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1188238/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitophagy Is Essential for Maintaining Cardiac Function During High Fat Diet-Induced Diabetic Cardiomyopathy. Circulation Research, 2019, 124, 1360-1371.	4.5	306
2	A Redox-Dependent Mechanism for Regulation of AMPK Activation by Thioredoxin1 during Energy Starvation. Cell Metabolism, 2014, 19, 232-245.	16.2	194
3	An alternative mitophagy pathway mediated by Rab9 protects the heart against ischemia. Journal of Clinical Investigation, 2019, 129, 802-819.	8.2	177
4	Redox Regulatory Mechanism of Transnitrosylation by Thioredoxin. Molecular and Cellular Proteomics, 2010, 9, 2262-2275.	3.8	115
5	Hippo Deficiency Leads to Cardiac Dysfunction Accompanied by Cardiomyocyte Dedifferentiation During Pressure Overload. Circulation Research, 2019, 124, 292-305.	4.5	82
6	Histone methyltransferase Smyd1 regulates mitochondrial energetics in the heart. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7871-E7880.	7.1	70
7	KLF5 Is Induced by FOXO1 and Causes Oxidative Stress and Diabetic Cardiomyopathy. Circulation Research, 2021, 128, 335-357.	4.5	57
8	Dual PPARÎ \pm /Î ³ activation inhibitsSIRT1-PGC1Î \pm axis and causes cardiac dysfunction. JCI Insight, 2019, 4, .	5.0	56
9	The role of redox modulation of class II histone deacetylases in mediating pathological cardiac hypertrophy. Journal of Molecular Medicine, 2009, 87, 785-791.	3.9	53
10	Metabolic reprogramming via PPARα signaling in cardiac hypertrophy and failure: From metabolomics to epigenetics. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H584-H596.	3.2	53
11	Alternative Mitophagy Protects the Heart Against Obesity-Associated Cardiomyopathy. Circulation Research, 2021, 129, 1105-1121.	4.5	49
12	Multiple Levels of PGC-1α Dysregulation in Heart Failure. Frontiers in Cardiovascular Medicine, 2020, 7, 2.	2.4	47
13	Peroxisome Proliferator Activated Receptor-α Association With Silent Information Regulator 1 Suppresses Cardiac Fatty Acid Metabolism in the Failing Heart. Circulation: Heart Failure, 2015, 8, 1123-1132.	3.9	44
14	YAP mediates compensatory cardiac hypertrophy through aerobic glycolysis in response to pressure overload. Journal of Clinical Investigation, 2022, 132, .	8.2	43
15	Thioredoxin-1 maintains mechanistic target of rapamycin (mTOR) function during oxidative stress in cardiomyocytes. Journal of Biological Chemistry, 2017, 292, 18988-19000.	3.4	41
16	Suppression of ERR targets by a PPARα/Sirt1 complex in the failing heart. Cell Cycle, 2012, 11, 856-864.	2.6	29
17	YAP plays a crucial role in the development of cardiomyopathy in lysosomal storage diseases. Journal of Clinical Investigation, 2021, 131, .	8.2	29
18	Nampt Potentiates Antioxidant Defense in Diabetic Cardiomyopathy. Circulation Research, 2021, 129, 114-130.	4.5	28

Shin-ichi Oka

#	Article	IF	CITATIONS
19	Yes-Associated Protein (YAP) Facilitates Pressure Overload–Induced Dysfunction in the Diabetic Heart. JACC Basic To Translational Science, 2019, 4, 611-622.	4.1	25
20	Recruitment of RNA Polymerase II to Metabolic Gene Promoters Is Inhibited in the Failing Heart Possibly Through PGC-11± (Peroxisome Proliferator-Activated Receptor-1̂3 Coactivator-11±) Dysregulation. Circulation: Heart Failure, 2019, 12, e005529.	3.9	19
21	Thioredoxin-1 maintains mitochondrial function via mechanistic target of rapamycin signalling in the heart. Cardiovascular Research, 2020, 116, 1742-1755.	3.8	18
22	Proteomic analysis of mitochondrial biogenesis in cardiomyocytes differentiated from human induced pluripotent stem cells. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R547-R562.	1.8	14
23	Perm1 regulates cardiac energetics as a downstream target of the histone methyltransferase Smyd1. PLoS ONE, 2020, 15, e0234913.	2.5	13
24	β-Hydroxybutyrate, a Ketone Body, Potentiates the Antioxidant Defense via Thioredoxin 1 Upregulation in Cardiomyocytes. Antioxidants, 2021, 10, 1153.	5.1	9
25	LncRNA KCNQ1OT1 promotes Atg12-mediated autophagy via inhibiting miR-26a-5p in ischemia reperfusion. International Journal of Cardiology, 2021, 339, 132-133.	1.7	5
26	Long-Term Habitual Vigorous Physical Activity Is Associated With Lower Visit-to-Visit Systolic Blood Pressure Variability: Insights From the SPRINT Trial. American Journal of Hypertension, 2021, 34, 463-466.	2.0	4
27	Protective role of Pink1-mediated mitophagy in Angiotensin II-induced cardiac injury. International Journal of Cardiology, 2018, 266, 218-219.	1.7	2