
Sven Rühle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11882134/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tabulated values of the Shockley–Queisser limit for single junction solar cells. Solar Energy, 2016, 130, 139-147.	2.9	1,103
2	Quantumâ€Ðot‧ensitized Solar Cells. ChemPhysChem, 2010, 11, 2290-2304.	1.0	825
3	Physical Chemical Principles of Photovoltaic Conversion with Nanoparticulate, Mesoporous Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2004, 108, 8106-8118.	1.2	584
4	Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 181, 306-313.	2.0	368
5	Surface Photovoltage Spectroscopy of Dye-Sensitized Solar Cells with TiO2, Nb2O5, and SrTiO3Nanocrystalline Photoanodes:Â Indication for Electron Injection from Higher Excited Dye States. Journal of Physical Chemistry B, 2001, 105, 6347-6352.	1.2	332
6	Molecular Adjustment of the Electronic Properties of Nanoporous Electrodes in Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2005, 109, 18907-18913.	1.2	327
7	PbS as a Highly Catalytic Counter Electrode for Polysulfide-Based Quantum Dot Solar Cells. Journal of Physical Chemistry C, 2011, 115, 6162-6166.	1.5	279
8	All-Oxide Photovoltaics. Journal of Physical Chemistry Letters, 2012, 3, 3755-3764.	2.1	263
9	Core/CdS Quantum Dot/Shell Mesoporous Solar Cells with Improved Stability and Efficiency Using an Amorphous TiO ₂ Coating. Journal of Physical Chemistry C, 2009, 113, 3895-3898.	1.5	239
10	Energy Band Alignment between Anatase and Rutile TiO ₂ . Journal of Physical Chemistry Letters, 2013, 4, 4182-4187.	2.1	210
11	Energy Level Alignment in CdS Quantum Dot Sensitized Solar Cells Using Molecular Dipoles. Journal of the American Chemical Society, 2009, 131, 9876-9877.	6.6	177
12	TiO2/Cu2O all-oxide heterojunction solar cells produced by spray pyrolysis. Solar Energy Materials and Solar Cells, 2015, 132, 549-556.	3.0	155
13	Conformal Nanoâ€Sized Inorganic Coatings on Mesoporous TiO ₂ Films for Lowâ€Temperature Dyeâ€Sensitized Solar Cell Fabrication. Advanced Functional Materials, 2010, 20, 282-288.	7.8	116
14	Electron Tunneling at the TiO2/Substrate Interface Can Determine Dye-Sensitized Solar Cell Performance. Journal of Physical Chemistry B, 2004, 108, 17946-17951.	1.2	103
15	Thin Film Co ₃ O ₄ /TiO ₂ Heterojunction Solar Cells. Advanced Energy Materials, 2015, 5, 1401007.	10.2	86
16	Quantum Efficiency and Bandgap Analysis for Combinatorial Photovoltaics: Sorting Activity of Cu–O Compounds in All-Oxide Device Libraries. ACS Combinatorial Science, 2014, 16, 53-65.	3.8	83
17	SrTiO ₃ Recombination-Inhibiting Barrier Layer for Type II Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 10015-10018.	1.5	67
18	Dye-sensitized solar tubes: A new solar cell design for efficient current collection and improved cell sealing. Solar Energy Materials and Solar Cells, 2010, 94, 317-322.	3.0	60

Sven Rühle

#	Article	IF	CITATIONS
19	The detailed balance limit of perovskite/silicon and perovskite/CdTe tandem solar cells. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600955.	0.8	44
20	Investigation of the Electric Field in TiO2/FTO Junctions Used in Dye-Sensitized Solar Cells by Photocurrent Transients. Journal of Physical Chemistry B, 2005, 109, 9522-9526.	1.2	43
21	Importance of Recombination at the TCO/Electrolyte Interface for High Efficiency Quantum Dot Sensitized Solar Cells. Journal of Physical Chemistry C, 2012, 116, 17473-17478.	1.5	42
22	Unpredicted electron injection in CdS/CdSe quantum dot sensitized ZrO2 solar cells. Physical Chemistry Chemical Physics, 2011, 13, 19302.	1.3	36
23	A two junction, four terminal photovoltaic device for enhanced light to electric power conversion using a low-cost dichroic mirror. Journal of Renewable and Sustainable Energy, 2009, 1, 013106.	0.8	33
24	Strong Efficiency Enhancement of Dye-Sensitized Solar Cells Using a La-Modified TiCl ₄ Treatment of Mesoporous TiO ₂ Electrodes. Journal of Physical Chemistry C, 2011, 115, 21481-21486.	1.5	32
25	Optical Waveguide Enhanced Photovoltaics. Optics Express, 2008, 16, 21801.	1.7	27
26	Four-point probe electrical resistivity scanning system for large area conductivity and activation energy mapping. Review of Scientific Instruments, 2014, 85, 055103.	0.6	15
27	A combined computational and experimental investigation of Mg doped α-Fe ₂ O ₃ . Physical Chemistry Chemical Physics, 2016, 18, 781-791.	1.3	15
28	Electrochemistry in Mesoporous Electrodes: Influence of Nanoporosity on the Chemical Potential of the Electrolyte in Dye Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 2022-2027.	1.5	14
29	Recombination Controlled Signal Transfer through Mesoporous TiO2Films. Journal of Physical Chemistry B, 2006, 110, 3883-3888.	1.2	7