Weiming Fu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11881919/publications.pdf

Version: 2024-02-01

35	4,143	257450	414414
papers	citations	h-index	g-index
25	25	25	2072
35 all docs	35 does citations	35 times ranked	3972 citing authors
			U

#	Article	IF	CITATIONS
1	Activation of NF-?B protects hippocampal neurons against oxidative stress-induced apoptosis: Evidence for induction of manganese superoxide dismutase and suppression of peroxynitrite production and protein tyrosine nitration. Journal of Neuroscience Research, 1997, 49, 681-697.	2.9	517
2	Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice. Nature Medicine, 1999, 5, 101-106.	30.7	457
3	The Endoplasmic Reticulum Stress-Responsive Protein GRP78 Protects Neurons Against Excitotoxicity and Apoptosis: Suppression of Oxidative Stress and Stabilization of Calcium Homeostasis. Experimental Neurology, 1999, 155, 302-314.	4.1	410
4	Protein modification by the lipid peroxidation product 4â€hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Annals of Neurology, 1998, 44, 819-824.	5 . 3	355
5	Par-4 is a mediator of neuronal degeneration associated with the pathogenesis of Alzheimer disease. Nature Medicine, 1998, 4, 957-962.	30.7	261
6	The Actin-Severing Protein Gelsolin Modulates Calcium Channel and NMDA Receptor Activities and Vulnerability to Excitotoxicity in Hippocampal Neurons. Journal of Neuroscience, 1997, 17, 8178-8186.	3.6	238
7	Anti-apoptotic Role of Telomerase in Pheochromocytoma Cells. Journal of Biological Chemistry, 1999, 274, 7264-7271.	3.4	220
8	Bclâ \in 2 Protects Isolated Plasma and Mitochondrial Membranes Against Lipid Peroxidation Induced by Hydrogen Peroxide and Amyloid βâ \in Peptide. Journal of Neurochemistry, 1998, 70, 31-39.	3.9	174
9	The Catalytic Subunit of Telomerase Is Expressed in Developing Brain Neurons and Serves a Cell Survival-Promoting Function. Journal of Molecular Neuroscience, 2000, 14, 003-016.	2.3	163
10	4-Hydroxynonenal, a product of lipid peroxidation, inhibits dephosphorylation of the microtubule-associated protein tau. NeuroReport, 1997, 8, 2275-2281.	1,2	161
11	Catecholamines Potentiate Amyloid \hat{l}^2 -Peptide Neurotoxicity: Involvement of Oxidative Stress, Mitochondrial Dysfunction, and Perturbed Calcium Homeostasis. Neurobiology of Disease, 1998, 5, 229-243.	4.4	161
12	The Catalytic Subunit of Telomerase Protects Neurons Against Amyloid βâ€Peptideâ€Induced Apoptosis. Journal of Neurochemistry, 2000, 75, 117-124.	3.9	155
13	Herp Stabilizes Neuronal Ca2+ Homeostasis and Mitochondrial Function during Endoplasmic Reticulum Stress. Journal of Biological Chemistry, 2004, 279, 28733-28743.	3.4	106
14	Telomerase Mediates the Cell Survival-Promoting Actions of Brain-Derived Neurotrophic Factor and Secreted Amyloid Precursor Protein in Developing Hippocampal Neurons. Journal of Neuroscience, 2002, 22, 10710-10719.	3.6	91
15	Autoantibodies to Amyloid \hat{l}^2 -Peptide (\hat{Al}^2) are Increased in Alzheimer's Disease Patients and \hat{Al}^2 Antibodies Can Enhance \hat{Al}^2 Neurotoxicity: Implications for Disease Pathogenesis and Vaccine Development. NeuroMolecular Medicine, 2003, 3, 29-40.	3.4	90
16	TERT suppresses apoptotis at a premitochondrial step by a mechanism requiring reverse transcriptase activity and 14â€3â€3 protein binding ability. FASEB Journal, 2003, 17, 767-769.	0.5	82
17	The Lipid Peroxidation Product 4-Hydroxynonenal Facilitates Opening of Voltage-dependent Ca2+ Channels in Neurons by Increasing Protein Tyrosine Phosphorylation. Journal of Biological Chemistry, 2002, 277, 24368-24375.	3.4	78
18	Superoxide mediates the cell-death-enhancing action of presenilin-1 mutations. Journal of Neuroscience Research, 1999, 56, 457-470.	2.9	62

#	Article	IF	Citations
19	Direct Cleavage of AMPA Receptor Subunit GluR1 and Suppression of AMPA Currents by Caspase-3. NeuroMolecular Medicine, 2002, 1, 69-80.	3.4	62
20	Alteration in calcium channel properties is responsible for the neurotoxic action of a familial frontotemporal dementia tau mutation. Journal of Neurochemistry, 2003, 87, 427-436.	3.9	59
21	Telomerase protects developing neurons against DNA damage-induced cell death. Developmental Brain Research, 2001, 131, 167-171.	1.7	55
22	Evidence that caspase-1 is a negative regulator of AMPA receptor-mediated long-term potentiation at hippocampal synapses. Journal of Neurochemistry, 2006, 97, 1104-1110.	3.9	49
23	The rs391957 variant cis-regulating oncogene GRP78 expression contributes to the risk of hepatocellular carcinoma. Carcinogenesis, 2013, 34, 1273-1280.	2.8	33
24	Caspase-Mediated Suppression of Glutamate (AMPA) Receptor Channel Activity in Hippocampal Neurons in Response to DNA Damage Promotes Apoptosis and Prevents Necrosis: Implications for Neurological Side Effects of Cancer Therapy and Neurodegenerative Disorders. Neurobiology of Disease, 2001, 8, 194-206.	4.4	26
25	Super-enhancer-driven lncRNA-DAW promotes liver cancer cell proliferation through activation of Wnt/ \hat{l}^2 -catenin pathway. Molecular Therapy - Nucleic Acids, 2021, 26, 1351-1363.	5.1	19
26	Bone Marrow Transplantation Reveals Roles for Brain Macrophage/Microglia TNF Signaling and Nitric Oxide Production in Excitotoxic Neuronal Death. NeuroMolecular Medicine, 2004, 5, 219-234.	3.4	18
27	Effects of hemocoagulase agkistrodon on the coagulation factors and its procoagulant activities. Drug Design, Development and Therapy, 2018, Volume 12, 1385-1398.	4.3	13
28	MAPKAP1 rs10118570 Polymorphism Is Associated with Anti-Infection and Anti-Hepatic Fibrogenesis in Schistosomiasis Japonica. PLoS ONE, 2014, 9, e105995.	2.5	11
29	The single-nucleotide polymorphisms in <i>CHD5</i> affect the prognosis of patients with hepatocellular carcinoma. Oncotarget, 2018, 9, 13222-13230.	1.8	7
30	The DNA damaging agent etoposide activates a cell survival pathway involving αâ€aminoâ€3â€hydroxyâ€5â€methylisoxazoleâ€4â€propionate receptors and mitogenâ€activated protein kinas hippocampal neurons. Journal of Neuroscience Research, 2002, 70, 671-679.	e 2i 9	6
31	Superoxide mediates the cellâ€deathâ€enhancing action of presenilinâ€1 mutations. Journal of Neuroscience Research, 1999, 56, 457-470.	2.9	3
32	Telomerase, DNA damage and apoptosis. Advances in Cell Aging and Gerontology, 2001, , 131-150.	0.1	1
33	Telomerase in brain development and neurodegenerative disorders. Advances in Cell Aging and Gerontology, 2001, , 167-183.	0.1	0
34	Assessing the Involvement of Telomerase in Stem Cell Biology. , 2002, 198, 125-136.		0
35	Design of Cluster Data Association Mining Algorithm Based on Multi-GANs. , 2021, , .		0