Pei Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1188064/publications.pdf

Version: 2024-02-01

840776 839539 22 305 11 18 citations h-index g-index papers 22 22 22 384 docs citations citing authors all docs times ranked

#	Article	lF	Citations
1	Enhanced dielectric properties of polystyrene by using graphene incorporated styrene-butyl acrylate microspheres. RSC Advances, 2022, 12, 20454-20460.	3.6	2
2	Preparation of (110)â€oriented SrTiO ₃ film on quartz glass by laser chemical vapor deposition. Journal of the American Ceramic Society, 2019, 102, 2135-2142.	3.8	1
3	Phase Structure, Microstructure and Electrical Properties of KxNa(1-x)NbO3 Piezoelectric Ceramics with Different K/Na Ratio. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 30-34.	1.0	4
4	Manganese-Doped CeO ₂ Nanocubes for Catalytic Combustion of Chlorobenzene: An Experimental and Density Functional Theory Study. Journal of Nanoscience and Nanotechnology, 2018, 18, 3348-3355.	0.9	7
5	Influence of deposition temperature on crystalline structure and morphologies of Co 3 O 4 films prepared by a direct liquid injection chemical vapor deposition. Surface and Coatings Technology, 2017, 319, 110-116.	4.8	11
6	Rare-Earth Free Self-Activated Graphene Quantum Dots and Copper-Cysteamine Phosphors for Enhanced White Light-Emitting-Diodes under Single Excitation. Scientific Reports, 2017, 7, 12872.	3.3	44
7	Monotonic quantum-to-classical transition enabled by positively correlated biphotons. Physical Review At 2017 595 Spectrally Pure States at Telecommunications Wavelengths from Periodically Poled <mml:math< td=""><td>2.5</td><td>8</td></mml:math<>	2.5	8
8	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mi>M</mml:mi><mml:mi>TiO</mml:mi><mml:mi>X</mml:mi>X<mml:ms< td=""><td>ub><mml:mr< td=""><td>ow><mml:mi< td=""></mml:mi<></td></mml:mr<></td></mml:ms<></mml:mrow>	ub> <mml:mr< td=""><td>ow><mml:mi< td=""></mml:mi<></td></mml:mr<>	ow> <mml:mi< td=""></mml:mi<>

#	Article	IF	CITATIONS
19	Effect of ceria morphology on the activity of MnOx/CeO2 catalysts for the catalytic combustion of chlorobenzene. RSC Advances, 2014, 4, 45665-45672.	3.6	35
20	Rapid deposition of YBCO films by laser CVD and effect of lattice mismatch on their epitaxial growth and critical temperature. Ceramics International, 2013, 39, 7491-7497.	4.8	11
21	Fast epitaxial growth of a-axis- and c-axis-oriented YBa2Cu3O7â^ films on (1 0 0) LaAlO3 substrate by laser chemical vapor deposition. Applied Surface Science, 2011, 257, 4317-4320.	6.1	19
22	High-speed growth of YBa ₂ Cu ₃ O _{7 â^^ Î} film with high critical temperature on MgO single crystal substrate by laser chemical vapor deposition. Superconductor Science and Technology, 2010, 23, 125010.	3.5	14