Jerry M Wells

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11880460/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intestinal permeability – a new target for disease prevention and therapy. BMC Gastroenterology, 2014, 14, 189.	0.8	1,187
2	Regulation of Tight Junction Permeability by Intestinal Bacteria and Dietary Components1,2. Journal of Nutrition, 2011, 141, 769-776.	1.3	901
3	Epithelial crosstalk at the microbiota–mucosal interface. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4607-4614.	3.3	492
4	Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. American Journal of Physiology - Renal Physiology, 2010, 298, G851-G859.	1.6	481
5	Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nature Reviews Microbiology, 2008, 6, 349-362.	13.6	464
6	Homeostasis of the gut barrier and potential biomarkers. American Journal of Physiology - Renal Physiology, 2017, 312, G171-G193.	1.6	408
7	Can probiotics modulate human disease by impacting intestinal barrier function?. British Journal of Nutrition, 2017, 117, 93-107.	1.2	343
8	Regulation of intestinal homeostasis and immunity with probiotic lactobacilli. Trends in Immunology, 2013, 34, 208-215.	2.9	294
9	Immunomodulatory mechanisms of lactobacilli. Microbial Cell Factories, 2011, 10, S17.	1.9	275
10	Faecalibacterium prausnitzii A2-165 has a high capacity to induce IL-10 in human and murine dendritic cells and modulates T cell responses. Scientific Reports, 2016, 6, 18507.	1.6	174
11	Identification of Genetic Loci in Lactobacillus plantarum That Modulate the Immune Response of Dendritic Cells Using Comparative Genome Hybridization. PLoS ONE, 2010, 5, e10632.	1.1	170
12	Identification of Lactobacillus plantarum genes modulating the cytokine response of human peripheral blood mononuclear cells. BMC Microbiology, 2010, 10, 293.	1.3	162
13	Guidance for Substantiating the Evidence for Beneficial Effects of Probiotics: Prevention and Management of Allergic Diseases by Probiotics1–3. Journal of Nutrition, 2010, 140, 713S-721S.	1.3	119
14	Immunomodulatory Properties of Streptococcus and Veillonella Isolates from the Human Small Intestine Microbiota. PLoS ONE, 2014, 9, e114277.	1.1	118
15	Mucosal Delivery of a Pneumococcal Vaccine UsingLactococcus lactisAffords Protection against Respiratory Infection. Journal of Infectious Diseases, 2007, 195, 185-193.	1.9	97
16	Impact of 4 Lactobacillus plantarum capsular polysaccharide clusters on surface glycan composition and host cell signaling. Microbial Cell Factories, 2012, 11, 149.	1.9	96
17	The role of innate signaling in the homeostasis of tolerance and immunity in the intestine. International Journal of Medical Microbiology, 2010, 300, 41-48.	1.5	84
18	L. plantarum, L. salivarius, and L. lactis Attenuate Th2 Responses and Increase Treg Frequencies in Healthy Mice in a Strain Dependent Manner. PLoS ONE, 2012, 7, e47244.	1.1	73

JERRY M WELLS

#	Article	IF	CITATIONS
19	Bioengineering Lactic Acid Bacteria to Secrete the HIV-1 Virucide Cyanovirin. Journal of Acquired Immune Deficiency Syndromes (1999), 2005, 40, 512-520.	0.9	61
20	An anti-HIV microbicide engineered in commensal bacteria: secretion of HIV-1 fusion inhibitors by lactobacilli. Aids, 2006, 20, 1917-1922.	1.0	51
21	Immunomodulatory effects of potential probiotics in a mouse peanut sensitization model. FEMS Immunology and Medical Microbiology, 2012, 65, 488-496.	2.7	51
22	Lactobacillus plantarum possesses the capability for wall teichoic acid backbone alditol switching. Microbial Cell Factories, 2012, 11, 123.	1.9	50
23	Probiotics Can Generate FoxP3 T-Cell Responses in the Small Intestine and Simultaneously Inducing CD4 and CD8 T Cell Activation in the Large Intestine. PLoS ONE, 2013, 8, e68952.	1.1	50
24	Supplementation with Lactobacillus plantarum WCFS1 Prevents Decline of Mucus Barrier in Colon of Accelerated Aging Ercc1â~/Ĵ"7 Mice. Frontiers in Immunology, 2016, 7, 408.	2.2	49
25	The Impact of Lactobacillus plantarum WCFS1 Teichoic Acid D-Alanylation on the Generation of Effector and Regulatory T-cells in Healthy Mice. PLoS ONE, 2013, 8, e63099.	1.1	47
26	IL-22-STAT3 Pathway Plays a Key Role in the Maintenance of Ileal Homeostasis in Mice Lacking Secreted Mucus Barrier. Inflammatory Bowel Diseases, 2015, 21, 531-542.	0.9	46
27	Impact of Lactobacillus plantarum Sortase on Target Protein Sorting, Gastrointestinal Persistence, and Host Immune Response Modulation. Journal of Bacteriology, 2013, 195, 502-509.	1.0	37
28	Host-Recognition of Pathogens and Commensals in the Mammalian Intestine. Current Topics in Microbiology and Immunology, 2011, 358, 291-321.	0.7	35
29	In vitro and in vivo characterization of DNA delivery using recombinant Lactococcus lactis expressing a mutated form of L. monocytogenes Internalin A. BMC Microbiology, 2012, 12, 299.	1.3	35
30	Vectorial secretion of interleukin-8 mediates autocrine signalling in intestinal epithelial cells via apically located CXCR1. BMC Research Notes, 2013, 6, 431.	0.6	30
31	Lactobacillus plantarum Strains Can Enhance Human Mucosal and Systemic Immunity and Prevent Non-steroidal Anti-inflammatory Drug Induced Reduction in T Regulatory Cells. Frontiers in Immunology, 2017, 8, 1000.	2.2	25
32	Omics approaches to study host–microbiota interactions. Current Opinion in Microbiology, 2013, 16, 270-277.	2.3	22
33	Cryopreservation of monocytes or differentiated immature DCs leads to an altered cytokine response to TLR agonists and microbial stimulation. Journal of Immunological Methods, 2011, 373, 136-142.	0.6	21
34	Recombinant invasive Lactococcus lactis can transfer DNA vaccines either directly to dendritic cells or across an epithelial cell monolayer. Vaccine, 2015, 33, 4807-4812.	1.7	21
35	Human oral isolate Lactobacillus fermentum AGR1487 induces a pro-inflammatory response in germ-free rat colons. Scientific Reports, 2016, 6, 20318.	1.6	16
36	Exopolysaccharides synthesized by Bifidobacterium animalis subsp. lactis interact with TLR4 in interact interact with TLR4 in	1.0	15

#	Article	IF	CITATIONS
37	Gnotobiology and the Study of Complex Interactions between the Intestinal Microbiota, Probiotics, and the Host. , 2015, , 109-133.		6