Hunaid B Nulwala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1187984/publications.pdf

Version: 2024-02-01

46 papers

2,053 citations

230014 27 h-index 274796 44 g-index

47 all docs

47 docs citations

47 times ranked

3725 citing authors

#	Article	IF	Citations
1	lonic Liquid-Assisted Electrochemical Extraction of Oxygen from Lunar Regolith. ECS Meeting Abstracts, 2021, MA2021-02, 1754-1754.	0.0	O
2	lonic cross-linked polyether and silica gel mixed matrix membranes for CO2 separation from flue gas. Separation and Purification Technology, 2018, 191, 301-306.	3.9	20
3	Ionic liquids and poly(ionic liquid)s for 3D printing – A focused mini-review. European Polymer Journal, 2018, 108, 390-398.	2.6	73
4	Highly conductive, flexible polymer electrolyte membrane based on poly(ethylene glycol) diacrylate-co-thiosiloxane network. Solid State Ionics, 2018, 322, 61-68.	1.3	25
5	Autocatalytic Synthesis of Bifluoride Ionic Liquids by SuFEx Click Chemistry. Angewandte Chemie, 2018, 130, 16237-16241.	1.6	15
6	Cubosomes from hierarchical self-assembly of poly(ionic liquid) block copolymers. Nature Communications, 2017, 8, 14057.	5.8	70
7	Polyphosphazene polymer development for mixed matrix membranes using SIFSIX-Cu-2i as performance enhancement filler particles. Journal of Membrane Science, 2017, 535, 103-112.	4.1	19
8	Hydrophobic physical solvents for pre-combustion CO2 capture: Experiments, computational simulations, and techno-economic analysis. International Journal of Greenhouse Gas Control, 2016, 49, 364-371.	2.3	35
9	Highly cross-linked polyether-based 1,2,3-triazolium ion conducting membranes with enhanced gas separation properties. European Polymer Journal, 2016, 84, 65-76.	2.6	35
10	Low glass transition temperature poly(ionic liquid) prepared from a new quaternary ammonium cationic monomer. Polymers for Advanced Technologies, 2015, 26, 823-828.	1.6	11
11	Eutectic ionic liquid mixtures and their effect on CO ₂ solubility and conductivity. RSC Advances, 2015, 5, 51407-51412.	1.7	15
12	Redox-Mediated Separation of Carbon Dioxide from Flue Gas. Energy & Samp; Fuels, 2015, 29, 7508-7515.	2.5	48
13	Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles. Journal of Materials Chemistry A, 2015, 3, 5014-5022.	5 . 2	283
14	Phosphazene High Polymers and Models with Cyclic Aliphatic Side Groups: New Structure–Property Relationships. Macromolecules, 2015, 48, 4301-4311.	2.2	46
15	An ultra-microporous organic polymer for high performance carbon dioxide capture and separation. Chemical Communications, 2015, 51, 13393-13396.	2.2	71
16	Crosslinked poly(ethylene oxide) containing siloxanes fabricated through thiolâ€ene photochemistry. Journal of Polymer Science Part A, 2015, 53, 1548-1557.	2.5	23
17	Branched isomeric 1,2,3-triazolium-based ionic liquids: new insight into structure–property relationships. Physical Chemistry Chemical Physics, 2015, 17, 29834-29843.	1.3	16
18	lonic liquid regioisomers: structure effect on the thermal and physical properties. New Journal of Chemistry, 2015, 39, 1563-1566.	1.4	10

#	Article	IF	Citations
19	Atom transfer radical polymerization of ionic liquid monomer: The influence of salt/counterion on polymerization. Journal of Polymer Science Part A, 2014, 52, 2175-2184.	2.5	29
20	Porous polymers prepared via high internal phase emulsion polymerization for reversible CO2 capture. Polymer, 2014, 55, 385-394.	1.8	88
21	Multifunctional photo-crosslinked polymeric ionic hydrogel films. Polymer Chemistry, 2014, 5, 2824-2835.	1.9	20
22	Molecular Simulation and Experimental Study of CO ₂ Absorption in Ionic Liquid Reverse Micelle. Journal of Physical Chemistry B, 2014, 118, 13870-13881.	1.2	9
23	Vinylâ€ŧriazolium monomers: Versatile and new class of radically polymerizable ionic monomers. Journal of Polymer Science Part A, 2014, 52, 417-423.	2.5	58
24	Toward a Materials Genome Approach for Ionic Liquids: Synthesis Guided by Ab Initio Property Maps. Journal of Physical Chemistry B, 2014, 118, 13609-13620.	1.2	19
25	Probing the effect of electron donation on CO2 absorbing 1,2,3-triazolide ionic liquids. RSC Advances, 2014, 4, 12748.	1.7	21
26	Modular polymerized ionic liquid block copolymer membranes for CO ₂ /N ₂ separation. Journal of Materials Chemistry A, 2014, 2, 7967-7972.	5.2	47
27	Contribution of the Acetate Anion to CO ₂ Solubility in Ionic Liquids: Theoretical Method Development and Experimental Study. Journal of Physical Chemistry B, 2014, 118, 7383-7394.	1.2	42
28	Synthesis of Poly(ionic liquid)s by Atom Transfer Radical Polymerization with ppm of Cu Catalyst. Macromolecules, 2014, 47, 6601-6609.	2.2	52
29	Clickable poly(ionic liquid)s for modification of glass and silicon surfaces. Polymer, 2014, 55, 3330-3338.	1.8	30
30	Understanding the effect of side groups in ionic liquids on carbon-capture properties: a combined experimental and theoretical effort. Physical Chemistry Chemical Physics, 2013, 15, 3264.	1.3	28
31	Synthesis and reactivity ratios of regioisomeric vinyl-1,2,3-triazoles with styrene. Journal of Polymer Science Part A, 2013, 51, 3359-3364.	2.5	7
32	Hydrophobic Polymeric Solvents for the Selective Absorption of CO ₂ from Warm Gas Streams that also Contain H ₂ and H ₂ O. Energy & Ener	2.5	19
33	Interactions in 1-ethyl-3-methyl imidazolium tetracyanoborate ion pair: Spectroscopic and density functional study. Journal of Molecular Structure, 2013, 1038, 12-18.	1.8	31
34	Nuclear Spin Relaxation and Molecular Interactions of a Novel Triazolium-Based Ionic Liquid. Journal of Physical Chemistry B, 2013, 117, 3877-3883.	1.2	15
35	A Simple and Universal Gel Permeation Chromatography Technique for Precise Molecular Weight Characterization of Well-Defined Poly(ionic liquid)s. Journal of the American Chemical Society, 2013, 135, 4227-4230.	6.6	151
36	Aprotic Heterocyclic Anion Triazolide Ionic Liquids - A New Class of Ionic Liquid Anion Accessed by the Huisgen Cycloaddition Reaction. Synlett, 2013, 24, 1093-1096.	1.0	7

#	Article	IF	CITATION
37	Theoretical and experimental studies of water interaction in acetate based ionic liquids. Physical Chemistry Chemical Physics, 2012, 14, 15897.	1.3	79
38	Copolymer-templated nitrogen-enriched porous nanocarbons for CO2 capture. Chemical Communications, 2012, 48, 11516.	2.2	109
39	Spectroscopic and computational analysis of the molecular interactions in the ionic liquid ion pair [BMP]+[TFSI]â^. Journal of Molecular Liquids, 2012, 175, 141-147.	2.3	29
40	Probing the structure-property relationship of regioisomeric ionic liquids with click chemistry. Green Chemistry, 2011, 13, 3345.	4.6	42
41	Tunable poly(hydroxyl urethane) from CO ₂ â€Based intermediates using thiolâ€ene chemistry. Journal of Polymer Science Part A, 2011, 49, 2024-2032.	2.5	28
42	N-Vinyltriazoles: A New Functional Monomer Family through Click Chemistry. Macromolecules, 2010, 43, 5474-5477.	2.2	41
43	Approaches to Solution Deposited Flexible Composite Vapor Barrier Films. Materials Research Society Symposia Proceedings, 2009, 1195, 227.	0.1	O
44	Synthesis and Characterization of Isomeric Vinyl-1,2,3-triazole Materials by Azideâ^'Alkyne Click Chemistry. Macromolecules, 2009, 42, 6068-6074.	2.2	74
45	Facile syntheses of 4â€vinylâ€1,2,3â€triazole monomers by click azide/acetylene coupling. Journal of Polymer Science Part A, 2008, 46, 2897-2912.	2.5	53
46	Molecularly defined (<scp>L</scp>)â€lactic acid oligomers and polymers: Synthesis and characterization. Journal of Polymer Science Part A, 2008, 46, 5977-5990.	2.5	110