Edwin Langmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1187905/publications.pdf

Version: 2024-02-01

75	975	16	27
papers	citations	h-index	g-index
77	77	77	325
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Construction of Eigenfunctions for the Elliptic Ruijsenaars Difference Operators. Communications in Mathematical Physics, 2022, 391, 901-950.	2.2	3
2	The non-chiral intermediate Heisenberg ferromagnet equation. Journal of High Energy Physics, 2022, 2022, 1.	4.7	4
3	Higher Order Deformed Elliptic Ruijsenaars Operators. Communications in Mathematical Physics, 2022, 392, 659-689.	2.2	3
4	From Kajihara's transformation formula to deformed Macdonald–Ruijsenaars and Noumi–Sano operators. Selecta Mathematica, New Series, 2022, 28, 1.	1.0	3
5	Spin generalizations of the Benjamin–Ono equation. Letters in Mathematical Physics, 2022, 112, .	1.1	5
6	Super-Macdonald Polynomials: Orthogonality and Hilbert Space Interpretation. Communications in Mathematical Physics, 2021, 388, 435-468.	2.2	7
7	Exact solutions by integrals of the non-stationary elliptic Calogero–Sutherland equation. Journal of Integrable Systems, 2020, 5, .	0.4	4
8	Nonchiral intermediate long-wave equation and interedge effects in narrow quantum Hall systems. Physical Review B, 2020, 102, .	3.2	11
9	Multi-solitons of the half-wave maps equation and Calogero–Moser spin–pole dynamics. Journal of Physics A: Mathematical and Theoretical, 2020, 53, 505702.	2.1	9
10	Orthogonality of superâ€Jack polynomials and a Hilbert space interpretation of deformed Calogero–Moser–Sutherland operators. Bulletin of the London Mathematical Society, 2019, 51, 353-370.	0.8	7
11	Ubiquity of Superconducting Domes in the Bardeen-Cooper-Schrieffer Theory with Finite-Range Potentials. Physical Review Letters, 2019, 122, 157001.	7.8	6
12	Diffusive Heat Waves in Random Conformal Field Theory. Physical Review Letters, 2019, 122, 020201.	7.8	21
13	Finite-Time Universality in Nonequilibrium CFT. Journal of Statistical Physics, 2018, 172, 353-378.	1.2	26
14	Deformed Calogero-Sutherland model and fractional quantum Hall effect. Journal of Mathematical Physics, 2017, 58, .	1.1	10
15	Time evolution of the Luttinger model with nonuniform temperature profile. Physical Review B, 2017, 95, .	3.2	22
16	Steady States and Universal Conductance in a Quenched Luttinger Model. Communications in Mathematical Physics, 2017, 349, 551-582.	2.2	35
17	Construction by bosonization of a fermion-phonon model. Journal of Mathematical Physics, 2015, 56, .	1.1	11
18	A product formula for the eigenfunctions of a quartic oscillator. Journal of Mathematical Analysis and Applications, 2015, 426, 1012-1025.	1.0	6

#	Article	IF	Citations
19	Explicit Solution of the (Quantum) Elliptic Calogero–Sutherland Model. Annales Henri Poincare, 2014, 15, 755-791.	1.7	12
20	Gauge Invariance, Correlated Fermions, and Photon Mass in 2+1 Dimensions. Journal of Statistical Physics, 2014, 154, 877-894.	1.2	1
21	Source Identities and Kernel Functions for Deformed (Quantum) Ruijsenaars Models. Letters in Mathematical Physics, 2014, 104, 811-835.	1.1	7
22	FERMIONS IN TWO DIMENSIONS, BOSONIZATION, AND EXACTLY SOLVABLE MODELS. Series on Directions in Condensed Matter Physics, 2013, , 211-230.	0.1	0
23	Source identity and kernel functions for Inozemtsev-type systems. Journal of Mathematical Physics, 2012, 53, 082105.	1.1	8
24	Exact Solution of a 2D Interacting Fermion Model. Communications in Mathematical Physics, 2012, 314, 1-56.	2.2	5
25	FERMIONS IN TWO DIMENSIONS, BOSONIZATION, AND EXACTLY SOLVABLE MODELS. International Journal of Modern Physics B, 2012, 26, 1244005.	2.0	3
26	A Unified Construction of Generalized Classical Polynomials Associated with Operators ofÂCalogero–Sutherland Type. Constructive Approximation, 2010, 31, 309-342.	3.0	16
27	A 2D Luttinger Model. Journal of Statistical Physics, 2010, 141, 17-52.	1.2	4
28	Partially Gapped Fermions in 2D. Journal of Statistical Physics, 2010, 139, 1033-1065.	1.2	11
29	A Two-Dimensional Analogue of the Luttinger Model. Letters in Mathematical Physics, 2010, 92, 109-124.	1.1	6
30	Source Identity and Kernel Functions for Elliptic Calogero–Sutherland Type Systems. Letters in Mathematical Physics, 2010, 94, 63-75.	1.1	9
31	Fermi's Golden Rule and Exponential Decay asÂaÂRGÂFixedÂPoint. Journal of Statistical Physics, 2009, 134, 749-768.	1.2	5
32	Mean Field Magnetic Phase Diagrams for the Two Dimensional t $\hat{a} \in \hat{a} \in \hat{a} \in \hat{a}$ U Hubbard Model. Journal of Statistical Physics, 2007, 127, 825-840.	1.2	13
33	Singular Eigenfunctions of Calogero-Sutherland Type Systems and How to Transform Them into Regular Ones. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 2007, , .	0.5	3
34	Explicit formulae for the eigenfunctions of the N-body Calogero model. Journal of Physics A, 2006, 39, 3511-3533.	1.6	4
35	Singular factorizations, self-adjoint extensions and applications to quantum many-body physics. Journal of Physics A, 2006, 39, 1057-1071.	1.6	2
36	Remarkable identities related to the (quantum) elliptic Calogero-Sutherland model. Journal of Mathematical Physics, 2006, 47, 022101.	1.1	12

#	Article	IF	Citations
37	AN EXPLICIT SOLUTION OF THE (QUANTUM) ELLIPTIC CALOGERO-SUTHERLAND MODEL., 2005, , .		11
38	Generalized local interactions in 1D: solutions of quantum many-body systems describing distinguishable particles. Journal of Physics A, 2005, 38, 4957-4974.	1.6	6
39	Exact solutions of two complementary one-dimensional quantum many-body systems on the half-line. Journal of Mathematical Physics, 2005, 46, 052101.	1.1	6
40	Gauge Theory Approach Towards an Explicit Solution of the (Classical) Elliptic Calogero-Moser System. Journal of Nonlinear Mathematical Physics, 2005, 12, 423.	1.3	2
41	Exact solution of a 1D quantum many-body system with momentum-dependent interactions. Journal of Physics A, 2004, 37, 4579-4592.	1.6	24
42	Exactly solvable models for 2D interacting fermions. Journal of Physics A, 2004, 37, 407-423.	1.6	3
43	Second Quantization of the Elliptic Calogero-Sutherland Model. Communications in Mathematical Physics, 2004, 247, 321-351.	2.2	12
44	Interacting fermions on non-commutative spaces: exactly solvable quantum field theories in 2n+1 dimensions. Nuclear Physics B, 2003, 654, 404-426.	2.5	18
45	NC Geometry and Quantum Fields: Simple Examples. Lecture Notes in Physics, 2002, , 278-298.	0.7	0
46	Duality in scalar field theory on noncommutative phase spaces. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2002, 533, 168-177.	4.1	156
47	Loop Groups and Quantum Fields. , 2002, , 45-94.		5
48	QUANTUM THEORY OF FERMION SYSTEMS: TOPICS BETWEEN PHYSICS AND MATHEMATICS., 2001,,.		0
49	Algorithms to solve the (quantum) Sutherland model. Journal of Mathematical Physics, 2001, 42, 4148-4157.	1.1	16
50	Teleparallel gravity and dimensional reductions of noncommutative gauge theory. Physical Review D, 2001, 64, .	4.7	31
51	Generalized Yang–Mills actions from Dirac operator determinants. Journal of Mathematical Physics, 2001, 42, 5238-5256.	1.1	19
52	Anyons and the Elliptic Calogero–Sutherland Model. Letters in Mathematical Physics, 2000, 54, 279-289.	1.1	25
53	Chiral Schwinger models without gauge anomalies. Nuclear Physics B, 2000, 587, 568-584.	2.5	0
54	Towards a string representation of infrared SU(2) Yang-Mills theory. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1999, 463, 252-256.	4.1	53

#	Article	IF	Citations
55	Loop Groups, Anyons and the Calogero-Sutherland Model. Communications in Mathematical Physics, 1999, 201, 1-34.	2.2	20
56	Finding and solving Calogero–Moser type systems using Yang–Mills gauge theories. Nuclear Physics B, 1999, 563, 506-532.	2.5	9
57	Mean field analysis of a model for superconductivity in an anti-ferromagnetic background. Physica C: Superconductivity and Its Applications, 1998, 296, 119-136.	1.2	4
58	Novel integrable spin-particle models from gauge theories on a cylinder. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1998, 429, 336-342.	4.1	11
59	Mean-field approach to antiferromagnetic domains in the doped Hubbard model. Physical Review B, 1997, 55, 9439-9451.	3.2	8
60	Introduction to simple integrable models of quantum field theory. , 1997, , 126-150.		0
61	Descent equations of Yang-Mills anomalies in noncommutative geometry. Journal of Geometry and Physics, 1997, 22, 259-279.	1.4	12
62	The Luttinger–Schwinger Model. Annals of Physics, 1997, 253, 310-331.	2.8	13
63	Elementary derivation of the chiral anomaly. Letters in Mathematical Physics, 1996, 36, 45-54.	1.1	8
64	Scattering matrix in external field problems. Journal of Mathematical Physics, 1996, 37, 3933-3953.	1.1	14
65	Noncommutative integration calculus. Journal of Mathematical Physics, 1995, 36, 3822-3835.	1.1	11
66	CONSISTENT AXIAL-LIKE GAUGE FIXING ON HYPERTORI. Modern Physics Letters A, 1994, 09, 2913-2926.	1.2	18
67	Fermion current algebras and Schwinger terms in (3+1)-dimensions. Communications in Mathematical Physics, 1994, 162, 1-32.	2.2	15
68	QCD1+1 with massless quarks and gauge covariant Sugawara construction. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1994, 341, 195-204.	4.1	9
69	(3 + 1)-dimensional Schwinger terms and non-commutative geometry. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1994, 338, 241-248.	4.1	16
70	Cocycles for boson and fermion Bogoliubov transformations. Journal of Mathematical Physics, 1994, 35, 96-112.	1.1	13
71	Gribov ambiguity and non-trivial vacuum structure of gauge theories on a cylinder. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1993, 303, 303-307.	4.1	26
72	A superversion of quasifree second quantization. I. Charged particles. Journal of Mathematical Physics, 1992, 33, 1032-1046.	1,1	21

EDWIN LANGMANN

#	Article	IF	CITATIONS
73	Gauge theories on a cylinder. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1992, 296, 117-120.	4.1	29
74	Bc2(T) of anisotropic systems: Some explicit results. Physica B: Condensed Matter, 1990, 165-166, 1061-1062.	2.7	6
75	Basic Properties of Non-Stationary Ruijsenaars Functions. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 0, , .	0.5	3