Sarah Durston

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11878063/publications.pdf

Version: 2024-02-01

31902 24179 13,675 121 53 110 citations h-index g-index papers 135 135 135 14498 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Reproducibility in the absence of selective reporting: AnÂillustration from largeâ€scale brain asymmetry research. Human Brain Mapping, 2022, 43, 244-254.	1.9	16
2	Consortium neuroscience of attention deficit/hyperactivity disorder and autism spectrum disorder: The <scp>ENIGMA</scp> adventure. Human Brain Mapping, 2022, 43, 37-55.	1.9	61
3	Interindividual Differences in Cortical Thickness and Their Genomic Underpinnings in Autism Spectrum Disorder. American Journal of Psychiatry, 2022, 179, 242-254.	4.0	28
4	Subtly altered topological asymmetry of brain structural covariance networks in autism spectrum disorder across 43 datasets from the ENIGMA consortium. Molecular Psychiatry, 2022, 27, 2114-2125.	4.1	25
5	Neurobiological Correlates of Change in Adaptive Behavior in Autism. American Journal of Psychiatry, 2022, 179, 336-349.	4.0	15
6	Resting state EEG power spectrum and functional connectivity in autism: a cross-sectional analysis. Molecular Autism, 2022, 13, 22.	2.6	20
7	Cerebellar Atypicalities in Autism?. Biological Psychiatry, 2022, 92, 674-682.	0.7	20
8	In-depth characterization of neuroradiological findings in a large sample of individuals with autism spectrum disorder and controls. NeuroImage: Clinical, 2022, 35, 103118.	1.4	3
9	Atypical Brain Asymmetry in Autismâ€"A Candidate for Clinically Meaningful Stratification. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 802-812.	1.1	36
10	Temporal Profiles of Social Attention Are Different Across Development in Autistic and Neurotypical People. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 813-824.	1.1	21
11	Which Child Will Benefit From a Behavioral Intervention for ADHD? A Pilot Study to Predict Intervention Efficacy From Individual Reward Sensitivity. Journal of Attention Disorders, 2021, 25, 1754-1764.	1.5	2
12	Developmental changes in fronto-striatal glutamate and their association with functioning during inhibitory control in autism spectrum disorder and obsessive compulsive disorder. NeuroImage: Clinical, 2021, 30, 102622.	1.4	12
13	Alcohol and Brain Development in Adolescents and Young Adults: A Systematic Review of the Literature and Advisory Report of the Health Council of the Netherlands. Advances in Nutrition, 2021, 12, 1379-1410.	2.9	15
14	Characterizing neuroanatomic heterogeneity in people with and without ADHD based on subcortical brain volumes. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2021, 62, 1140-1149.	3.1	14
15	Towards robust and replicable sex differences in the intrinsic brain function of autism. Molecular Autism, 2021, 12, 19.	2.6	40
16	Analysis of structural brain asymmetries in attentionâ€deficit/hyperactivity disorder in 39 datasets. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2021, 62, 1202-1219.	3.1	40
17	Imbalanced social-communicative and restricted repetitive behavior subtypes of autism spectrum disorder exhibit different neural circuitry. Communications Biology, 2021, 4, 574.	2.0	17
18	The development of cognitive control in children with autism spectrum disorder or obsessive-compulsive disorder: A longitudinal fMRI study. NeuroImage Reports, 2021, 1, 100015.	0.5	0

#	Article	IF	Citations
19	Towards an integrated account of the development of self-regulation from a neurocognitive perspective: A framework for current and future longitudinal multi-modal investigations. Developmental Cognitive Neuroscience, 2020, 45, 100829.	1.9	26
20	Gray matter covariations and core symptoms of autism: the EU-AIMS Longitudinal European Autism Project. Molecular Autism, 2020, 11, 86.	2.6	25
21	Subcortical Brain Volume, Regional Cortical Thickness, and Cortical Surface Area Across Disorders: Findings From the ENIGMA ADHD, ASD, and OCD Working Groups. American Journal of Psychiatry, 2020, 177, 834-843.	4.0	120
22	Social brain activation during mentalizing in a large autism cohort: the Longitudinal European Autism Project. Molecular Autism, 2020, 11 , 17 .	2.6	40
23	Shared vulnerability for connectome alterations across psychiatric and neurological brain disorders. Nature Human Behaviour, 2019, 3, 988-998.	6.2	75
24	Altered structural brain asymmetry in autism spectrum disorder in a study of 54 datasets. Nature Communications, 2019, 10, 4958.	5.8	167
25	Individualized Prediction of Transition to Psychosis in 1,676 Individuals at Clinical High Risk: Development and Validation of a Multivariable Prediction Model Based on Individual Patient Data Meta-Analysis. Frontiers in Psychiatry, 2019, 10, 345.	1.3	29
26	10Kin1day: A Bottom-Up Neuroimaging Initiative. Frontiers in Neurology, 2019, 10, 425.	1.1	15
27	Brain Imaging of the Cortex in ADHD: A Coordinated Analysis of Large-Scale Clinical and Population-Based Samples. American Journal of Psychiatry, 2019, 176, 531-542.	4.0	261
28	Investigating the factors underlying adaptive functioning in autism in the EUâ€AIMS Longitudinal European Autism Project. Autism Research, 2019, 12, 645-657.	2.1	87
29	Dissecting the Heterogeneous Cortical AnatomyÂof Autism Spectrum Disorder Using Normative Models. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 567-578.	1.1	97
30	Frontostriatal functional connectivity correlates with repetitive behaviour across autism spectrum disorder and obsessive–compulsive disorder. Psychological Medicine, 2019, 49, 2247-2255.	2.7	20
31	Altered Connectivity Between Cerebellum, Visual, and Sensory-Motor Networks in Autism Spectrum Disorder: Results from the EU-AIMS Longitudinal European Autism Project. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 260-270.	1.1	82
32	Can we use neuroimaging data to differentiate between subgroups of children with ADHD symptoms: A proof of concept study using latent class analysis of brain activity. Neurolmage: Clinical, 2019, 21, 101601.	1.4	17
33	No evidence of differences in cognitive control in children with autism spectrum disorder or obsessive-compulsive disorder: An fMRI study. Developmental Cognitive Neuroscience, 2019, 36, 100602.	1.9	16
34	Children with ADHD symptoms show deficits in reactive but not proactive inhibition, irrespective of their formal diagnosis. Psychological Medicine, 2018, 48, 2515-2521.	2.7	37
35	A multicohort, longitudinal study of cerebellar development in attention deficit hyperactivity disorder. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2018, 59, 1114-1123.	3.1	34
36	A multisample study of longitudinal changes in brain network architecture in 4–13â€yearâ€old children. Human Brain Mapping, 2018, 39, 157-170.	1.9	26

3

#	Article	IF	CITATIONS
37	Striatal structure and its association with N-Acetylaspartate and glutamate in autism spectrum disorder and obsessive compulsive disorder. European Neuropsychopharmacology, 2018, 28, 118-129.	0.3	18
38	Cortical and Subcortical Brain Morphometry Differences Between Patients With Autism Spectrum Disorder and Healthy Individuals Across the Lifespan: Results From the ENIGMA ASD Working Group. American Journal of Psychiatry, 2018, 175, 359-369.	4.0	356
39	Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA Consortium. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5154-E5163.	3.3	299
40	Glutamatergic Agents in the Treatment of Compulsivity and Impulsivity in Child and Adolescent Psychiatry: a Systematic Review of the Literature. Zeitschrift FĀœr Kinder- Und Jugendpsychiatrie Und Psychotherapie, 2018, 46, 246-263.	0.4	16
41	Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis. Lancet Psychiatry,the, 2017, 4, 310-319.	3.7	565
42	Structural and functional connectivity in children and adolescents with and without attention deficit/hyperactivity disorder. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2017, 58, 810-818.	3.1	62
43	Development of cortical thickness and surface area in autism spectrum disorder. Neurolmage: Clinical, 2017, 13, 215-222.	1.4	59
44	What to expect and when to expect it: an fMRI study of expectancy in children with ADHD symptoms. European Child and Adolescent Psychiatry, 2017, 26, 583-590.	2.8	6
45	Neural correlates of preferred activities: development of an interest-specific go/nogo task. Social Cognitive and Affective Neuroscience, 2017, 12, 1890-1901.	1.5	3
46	What can Cortical Development in Attention-Deficit/Hyperactivity Disorder Teach us About the Early Developmental Mechanisms Involved?. Cerebral Cortex, 2017, 27, 4624-4634.	1.6	42
47	Auditory processing in autism spectrum disorder: Mismatch negativity deficits. Autism Research, 2017, 10, 1857-1865.	2.1	49
48	The EU-AIMS Longitudinal European Autism Project (LEAP): design and methodologies to identify and validate stratification biomarkers for autism spectrum disorders. Molecular Autism, 2017, 8, 24.	2.6	183
49	The EU-AIMS Longitudinal European Autism Project (LEAP): clinical characterisation. Molecular Autism, 2017, 8, 27.	2.6	126
50	Children with <scp>ADHD</scp> symptoms show decreased activity in ventral striatum during the anticipation of reward, irrespective of <scp>ADHD</scp> diagnosis. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2017, 58, 206-214.	3.1	36
51	Individual prediction of long-term outcome in adolescents at ultra-high risk for psychosis: Applying machine learning techniques to brain imaging data. Human Brain Mapping, 2017, 38, 704-714.	1.9	56
52	Fronto-Striatal Glutamate in Autism Spectrum Disorder and Obsessive Compulsive Disorder. Neuropsychopharmacology, 2017, 42, 2456-2465.	2.8	39
53	XKR4 Gene Effects on Cerebellar Development Are Not Specific to ADHD. Frontiers in Cellular Neuroscience, 2017, 11, 396.	1.8	4
54	Bumetanide As a Candidate Treatment for Behavioral Problems in Tuberous Sclerosis Complex. Frontiers in Neurology, 2017, 8, 469.	1.1	11

#	Article	IF	CITATIONS
55	The development of brain network architecture. Human Brain Mapping, 2016, 37, 717-729.	1.9	58
56	Brain development in adolescents at ultra-high risk for psychosis: Longitudinal changes related to resilience. NeuroImage: Clinical, 2016, 12, 542-549.	1.4	43
57	COMPULS: design of a multicenter phenotypic, cognitive, genetic, and magnetic resonance imaging study in children with compulsive syndromes. BMC Psychiatry, 2016, 16, 361.	1.1	13
58	Identification and validation of biomarkers for autism spectrum disorders. Nature Reviews Drug Discovery, 2016, 15, 70-70.	21.5	117
59	Effects of omega-3 polyunsaturated fatty acids on human brain morphology and function: What is the evidence?. European Neuropsychopharmacology, 2016, 26, 546-561.	0.3	63
60	Changes in Thickness and Surface Area of the Human Cortex and Their Relationship with Intelligence. Cerebral Cortex, 2015, 25, 1608-1617.	1.6	290
61	Capturing the dynamics of response variability in the brain in ADHD. Neurolmage: Clinical, 2015, 7, 132-141.	1.4	39
62	Reduced Gyrification Is Related to Reduced Interhemispheric Connectivity in Autism Spectrum Disorders. Journal of the American Academy of Child and Adolescent Psychiatry, 2015, 54, 668-676.	0.3	37
63	<i>DRD3</i> gene and striatum in autism spectrum disorder. British Journal of Psychiatry, 2015, 206, 431-432.	1.7	27
64	Reduced Symptoms of Inattention after Dietary Omega-3 Fatty Acid Supplementation in Boys with and without Attention Deficit/Hyperactivity Disorder. Neuropsychopharmacology, 2015, 40, 2298-2306.	2.8	80
65	Developmental differences in intraâ€individual variability in children with <scp>ADHD</scp> and <scp>ASD</scp> . Journal of Child Psychology and Psychiatry and Allied Disciplines, 2015, 56, 1316-1326.	3.1	22
66	Childhood trauma and clinical outcome in patients at ultra-high risk of transition to psychosis. Schizophrenia Research, 2015, 169, 193-198.	1.1	40
67	Reward Anticipation in Ventral Striatum and Individual Sensitivity to Reward: A Pilot Study of a Child-Friendly fMRI Task. PLoS ONE, 2015, 10, e0142413.	1.1	10
68	Adolescents let sufficient evidence accumulate before making a decision when large incentives are at stake. Developmental Science, 2014, 17, 59-70.	1.3	41
69	Typical development of basal ganglia, hippocampus, amygdala and cerebellum from age 7 to 24. Neurolmage, 2014, 96, 67-72.	2.1	235
70	Unique developmental trajectories of cortical thickness and surface area. NeuroImage, 2014, 87, 120-126.	2.1	458
71	Common and unique neural networks for proactive and reactive response inhibition revealed by independent component analysis of functional MRI data. NeuroImage, 2014, 103, 65-74.	2.1	103
72	The Impact of Stimulants on Cognition and the Brain in Attention-Deficit/Hyperactivity Disorder: What Does Age Have to Do With It?. Biological Psychiatry, 2014, 76, 596-598.	0.7	2

#	Article	IF	CITATIONS
73	Developmental differences in higher-order resting-state networks in Autism Spectrum Disorder. Neurolmage: Clinical, 2014, 4, 820-827.	1.4	42
74	Changes in the Development of Striatum Are Involved in Repetitive Behavior in Autism. Biological Psychiatry, 2014, 76, 405-411.	0.7	194
75	Neurocognitive and Clinical Predictors of Long-Term Outcome in Adolescents at Ultra-High Risk for Psychosis: A 6-Year Follow-Up. PLoS ONE, 2014, 9, e93994.	1.1	70
76	MR imaging of the effects of methylphenidate on brain structure and function in Attention-Deficit/Hyperactivity Disorder. European Neuropsychopharmacology, 2013, 23, 1151-1164.	0.3	76
77	Imaging gene and environmental effects on cerebellum in Attention-Deficit/Hyperactivity Disorder and typical development. NeuroImage: Clinical, 2013, 2, 103-110.	1.4	11
78	Progressive Structural Brain Changes During Development of Psychosis. Schizophrenia Bulletin, 2012, 38, 519-530.	2.3	142
79	Fronto-striatal circuitry and inhibitory control in autism: Findings from diffusion tensor imaging tractography. Cortex, 2012, 48, 183-193.	1.1	208
80	Differential Brain Development with Low and High IQ in Attention-Deficit/Hyperactivity Disorder. PLoS ONE, 2012, 7, e35770.	1.1	55
81	Decreased frontostriatal microstructural organization in attention deficit/hyperactivity disorder. Human Brain Mapping, 2012, 33, 1941-1951.	1.9	65
82	Deficits in Cognitive Control, Timing and Reward Sensitivity Appear to be Dissociable in ADHD. PLoS ONE, 2012, 7, e51416.	1.1	53
83	Differentiating Frontostriatal and Fronto-Cerebellar Circuits in Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry, 2011, 69, 1178-1184.	0.7	211
84	Functional connectivity between cognitive control regions is sensitive to familial risk for ADHD. Human Brain Mapping, 2011, 32, 1511-1518.	1.9	13
85	The neurobiology of repetitive behavior: … and men. Neuroscience and Biobehavioral Reviews, 2011, 35, 356-365.	2.9	218
86	The neurobiology of repetitive behavior: Of mice…. Neuroscience and Biobehavioral Reviews, 2011, 35, 345-355.	2.9	167
87	Challenges and methods in developmental neuroimaging. Human Brain Mapping, 2010, 31, 835-837.	1.9	16
88	Basic Impairments in Regulating the Speed-Accuracy Tradeoff Predict Symptoms of Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry, 2010, 68, 1114-1119.	0.7	113
89	Imaging genetics in ADHD. Neurolmage, 2010, 53, 832-838.	2.1	68
90	Functional MRI and Response Inhibition in Children Exposed to Cocaine in utero. Developmental Neuroscience, 2009, 31, 159-166.	1.0	58

#	Article	IF	Citations
91	No differences in MR-based volumetry between 2- and 7-year-old children with autism spectrum disorder and developmental delay. Brain and Development, 2009, 31, 725-730.	0.6	27
92	Imaging genetics in ADHD: A focus on cognitive control. Neuroscience and Biobehavioral Reviews, 2009, 33, 674-689.	2.9	75
93	Changes in the Developmental Trajectories of Striatum in Autism. Biological Psychiatry, 2009, 66, 327-333.	0.7	225
94	No evidence for structural brain changes in young adolescents at ultra high risk for psychosis. Schizophrenia Research, 2009, 112, 1-6.	1.1	33
95	Magnetic Resonance Simulation is Effective in Reducing Anxiety Related to Magnetic Resonance Scanning in Children. Journal of the American Academy of Child and Adolescent Psychiatry, 2009, 48, 206-207.	0.3	37
96	Converging methods in studying attention-deficit/hyperactivity disorder: What can we learn from neuroimaging and genetics?. Development and Psychopathology, 2008, 20, 1133-1143.	1.4	33
97	Familial Vulnerability to ADHD Affects Activity in the Cerebellum in Addition to the Prefrontal Systems. Journal of the American Academy of Child and Adolescent Psychiatry, 2008, 47, 68-75.	0.3	72
98	Dopamine Transporter Genotype Conveys Familial Risk of Attention-Deficit/Hyperactivity Disorder Through Striatal Activation. Journal of the American Academy of Child and Adolescent Psychiatry, 2008, 47, 61-67.	0.3	97
99	Neuroimaging in Child Psychiatry. , 2008, , 238-249.		0
100	New potential leads in the biology and treatment of attention deficit-hyperactivity disorder. Current Opinion in Neurology, 2007, 20, 119-124.	1.8	86
101	Converging Evidence for a Fronto-Basal-Ganglia Network for Inhibitory Control of Action and Cognition: Figure 1 Journal of Neuroscience, 2007, 27, 11860-11864.	1.7	461
102	Caudate Nucleus Is Enlarged in High-Functioning Medication-Naive Subjects with Autism. Biological Psychiatry, 2007, 62, 262-266.	0.7	181
103	Neural and behavioral correlates of expectancy violations in attention-deficit hyperactivity disorder. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2007, 48, 881-889.	3.1	88
104	Integrating genetic, psychopharmacological and neuroimaging studies: A converging methods approach to understanding the neurobiology of ADHD. Developmental Review, 2007, 27, 374-395.	2.6	35
105	Activation in Ventral Prefrontal Cortex is Sensitive to Genetic Vulnerability for Attention-Deficit Hyperactivity Disorder. Biological Psychiatry, 2006, 60, 1062-1070.	0.7	174
106	From Behavior to Cognition to the Brain and Back: What Have We Learned From Functional Imaging Studies of Attention Deficit Hyperactivity Disorder?. American Journal of Psychiatry, 2006, 163, 957-960.	4.0	71
107	No evidence for preferential involvement of medial temporal lobe structures in high-functioning autism. Psychological Medicine, 2006, 36, 827-834.	2.7	50
108	A shift from diffuse to focal cortical activity with development. Developmental Science, 2006, 9, 1-8.	1.3	598

#	Article	IF	CITATIONS
109	A shift from diffuse to focal cortical activity with development: the authors' reply. Developmental Science, 2006, 9, 18-20.	1.3	29
110	Radiological findings in autistic and developmentally delayed children. Brain and Development, 2006, 28, 495-499.	0.6	42
111	What have we learned about cognitive development from neuroimaging?. Neuropsychologia, 2006, 44, 2149-2157.	0.7	253
112	Increased gray-matter volume in medication-naive high-functioning children with autism spectrum disorder. Psychological Medicine, 2005, 35, 561-570.	2.7	137
113	Imaging the developing brain: what have we learned about cognitive development?. Trends in Cognitive Sciences, 2005, 9, 104-110.	4.0	1,224
114	Evidence of Developmental Differences in Implicit Sequence Learning: An fMRI Study of Children and Adults. Journal of Cognitive Neuroscience, 2004, 16, 1339-1351.	1.1	208
115	Magnetic Resonance Imaging of Boys With Attention-Deficit/Hyperactivity Disorder and Their Unaffected Siblings. Journal of the American Academy of Child and Adolescent Psychiatry, 2004, 43, 332-340.	0.3	306
116	A review of the biological bases of ADHD: What have we learned from imaging studies?. Mental Retardation and Developmental Disabilities Research Reviews, 2003, 9, 184-195.	3.5	335
117	Differential patterns of striatal activation in young children with and without ADHD. Biological Psychiatry, 2003, 53, 871-878.	0.7	563
118	A neural basis for the development of inhibitory control. Developmental Science, 2002, 5, F9-F16.	1.3	547
119	Anatomical MRI of the Developing Human Brain: What Have We Learned?. Journal of the American Academy of Child and Adolescent Psychiatry, 2001, 40, 1012-1020.	0.3	383
120	Volumes of Brain Structures in Twins Discordant for Schizophrenia. Archives of General Psychiatry, 2001, 58, 33.	13.8	187
121	Evidence for a mechanistic model of cognitive control. Clinical Neuroscience Research, 2001, 1, 267-282.	0.8	138