Eric J Warrant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1187636/publications.pdf

Version: 2024-02-01

53789 66906 7,603 125 45 78 citations h-index g-index papers 140 140 140 4360 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Flight-induced compass representation in the monarch butterfly heading network. Current Biology, 2022, 32, 338-349.e5.	3.9	42
2	It's all about seeing and hearing: the Editors' and Readers' Choice Awards 2022. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2022, , 1.	1.6	1
3	Mike Land: a personal remembrance. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2022, 208, 345-347.	1.6	O
4	Potential for identification of wild night-flying moths by remote infrared microscopy. Journal of the Royal Society Interface, 2022, 19, .	3.4	8
5	How Dung Beetles Steer Straight. Annual Review of Entomology, 2021, 66, 243-256.	11.8	24
6	Wing damage affects flight kinematics but not flower tracking performance in hummingbird hawkmoths. Journal of Experimental Biology, 2021, 224, .	1.7	11
7	Moths are strongly attracted to ultraviolet and blue radiation. Insect Conservation and Diversity, 2021, 14, 188-198.	3.0	25
8	Heading variations resolve the heading-direction ambiguity in vertical-beam radar observations of insect migration. International Journal of Remote Sensing, 2021, 42, 3873-3898.	2.9	0
9	Nocturnal Bees as Crop Pollinators. Agronomy, 2021, 11, 1014.	3.0	8
10	A Guide for Using Flight Simulators to Study the Sensory Basis of Long-Distance Migration in Insects. Frontiers in Behavioral Neuroscience, 2021, 15, 678936.	2.0	7
11	Unravelling the enigma of bird magnetoreception. Nature, 2021, 594, 497-498.	27.8	8
12	Editorial. Arthropod Structure and Development, 2021, 63, 101073.	1.4	0
13	Dorsal landmark navigation in a Neotropical nocturnal bee. Current Biology, 2021, 31, 3601-3605.e3.	3.9	5
14	A unified platform to manage, share, and archive morphological and functional data in insect neuroscience. ELife, 2021, 10, .	6.0	21
15	Australian Bogong moths <i>Agrotis infusa</i> (Lepidoptera: Noctuidae), 1951–2020: decline and crash. Austral Entomology, 2021, 60, 66-81.	1.4	25
16	A new, fluorescence-based method for visualizing the pseudopupil and assessing optical acuity in the dark compound eyes of honeybees and other insects. Scientific Reports, 2021, 11, 21267.	3.3	2
17	Animal navigation: a noisy magnetic sense?. Journal of Experimental Biology, 2020, 223, .	1.7	20
18	Cover Image, Volume 528, Issue 11. Journal of Comparative Neurology, 2020, 528, C4.	1.6	0

#	Article	IF	CITATIONS
19	OBSOLETE: Light and Visual Environments. , 2020, , .		О
20	Retinal Ganglion Cell Topography and Spatial Resolving Power in Echolocating and Non-Echolocating Bats. Brain, Behavior and Evolution, 2020, 95, 58-68.	1.7	3
21	Bogong Moths Are Well Camouflaged by Effectively Decolourized Wing Scales. Frontiers in Physiology, 2020, 11, 95.	2.8	6
22	Insect Target Classes Discerned from Entomological Radar Data. Remote Sensing, 2020, 12, 673.	4.0	8
23	The brain of a nocturnal migratory insect, the Australian Bogong moth. Journal of Comparative Neurology, 2020, 528, 1942-1963.	1.6	31
24	Spatial orientation based on multiple visual cues in non-migratory monarch butterflies. Journal of Experimental Biology, 2020, 223, .	1.7	20
25	Light and Visual Environments. , 2020, , 4-30.		5
26	Desert Navigator: The Journey of an Ant. By Rüdiger Wehner. Belknap Press. Cambridge (Massachusetts): Harvard University Press. \$59.95. vii + 392 p.; ill.; index. ISBN: 9780674045880. 2020 Quarterly Review of Biology, 2020, 95, 327-328.	0.1	0
27	Animal Signals: Dirty Dancing in the Dark?. Current Biology, 2019, 29, R834-R836.	3.9	0
28	Retinal oxygen supply shaped the functional evolution of the vertebrate eye. ELife, 2019, 8, .	6.0	19
29	Auditory opportunity and visual constraint enabled the evolution of echolocation in bats. Nature Communications, 2018, 9, 98.	12.8	57
30	Visual Optics: Remarkable Image-Forming Mirrors inÂScallop Eyes. Current Biology, 2018, 28, R262-R264.	3.9	3
31	Evidence for a southward autumn migration of nocturnal noctuid moths in central Europe. Journal of Experimental Biology, 2018, 221, .	1.7	37
32	The Earth's Magnetic Field and Visual Landmarks Steer Migratory Flight Behavior in the Nocturnal Australian Bogong Moth. Current Biology, 2018, 28, 2160-2166.e5.	3.9	94
33	Neuroarchitecture of the dung beetle central complex. Journal of Comparative Neurology, 2018, 526, 2612-2630.	1.6	47
34	Consequences of evolutionary transitions in changing photic environments. Austral Entomology, 2017, 56, 23-46.	1.4	52
35	Vision in dim light: highlights and challenges. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160062.	4.0	31
36	The remarkable visual capacities of nocturnal insects: vision at the limits with small eyes and tiny brains. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160063.	4.0	77

#	Article	IF	CITATIONS
37	Higher-order neural processing tunes motion neurons to visual ecology in three species of hawkmoths. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170880.	2.6	25
38	Visual Tracking: Hot Pursuit with Tiny Eyes. Current Biology, 2017, 27, R234-R237.	3.9	1
39	An Anatomically Constrained Model for Path Integration in the Bee Brain. Current Biology, 2017, 27, 3069-3085.e11.	3.9	290
40	Oilbirds. Current Biology, 2017, 27, R1145-R1147.	3.9	4
41	Resolving the Trade-off Between Visual Sensitivity and Spatial Acuityâ€"Lessons from Hawkmoths. Integrative and Comparative Biology, 2017, 57, 1093-1103.	2.0	14
42	Comparison of Navigation-Related Brain Regions in Migratory versus Non-Migratory Noctuid Moths. Frontiers in Behavioral Neuroscience, 2017, 11, 158.	2.0	26
43	Visual Adaptations for Mate Detection in the Male Carpenter Bee Xylocopa tenuiscapa. PLoS ONE, 2017, 12, e0168452.	2.5	23
44	The Australian Bogong Moth Agrotis infusa: A Long-Distance Nocturnal Navigator. Frontiers in Behavioral Neuroscience, 2016, 10, 77.	2.0	80
45	Bumblebees Perform Well-Controlled Landings in Dim Light. Frontiers in Behavioral Neuroscience, 2016, 10, 174.	2.0	12
46	Differential investment in visual and olfactory brain areas reflects behavioural choices in hawk moths. Scientific Reports, 2016, 6, 26041.	3.3	72
47	Bogong moths. Current Biology, 2016, 26, R263-R265.	3.9	5
48	Visual Navigation in Nocturnal Insects. Physiology, 2016, 31, 182-192.	3.1	60
49	Superior visual performance in nocturnal insects: neural principles and bio-inspired technologies. Proceedings of SPIE, 2016, , .	0.8	2
50	The Dual Function of Orchid Bee Ocelli as Revealed by X-Ray Microtomography. Current Biology, 2016, 26, 1319-1324.	3.9	53
51	Adaptations for nocturnal and diurnal vision in the hawkmoth lamina. Journal of Comparative Neurology, 2016, 524, 160-175.	1.6	58
52	Sensory matched filters. Current Biology, 2016, 26, R976-R980.	3.9	33
53	Flight control and landing precision in the nocturnal bee Megalopta is robust to large changes in light intensity. Frontiers in Physiology, 2015, 6, 305.	2.8	22
54	Visual tracking in the dead of night. Science, 2015, 348, 1212-1213.	12.6	2

#	Article	IF	Citations
55	Photoreceptor Evolution: Ancient â€~Cones' Turn Out to Be Rods. Current Biology, 2015, 25, R148-R151.	3.9	4
56	Effect of light intensity on flight control and temporal properties of photoreceptors in bumblebees. Journal of Experimental Biology, 2015, 218, 1339-46.	1.7	47
57	The energetic cost of vision and the evolution of eyeless Mexican cavefish. Science Advances, 2015, 1, e1500363.	10.3	181
58	Neural coding underlying the cue preference for celestial orientation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11395-11400.	7.1	166
59	Large variation among photoreceptors as the basis of visual flexibility in the common backswimmer. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141177.	2.6	17
60	The Remarkable Visual Abilities of Nocturnal Insects: Neural Principles and Bioinspired Night-Vision Algorithms. Proceedings of the IEEE, 2014, 102, 1411-1426.	21.3	20
61	Eyeless Mexican Cavefish Save Energy by Eliminating the Circadian Rhythm in Metabolism. PLoS ONE, 2014, 9, e107877.	2.5	108
62	Vision and the light environment. Current Biology, 2013, 23, R990-R994.	3.9	62
63	Dung Beetles Use the Milky Way for Orientation. Current Biology, 2013, 23, 298-300.	3.9	178
64	Dung beetles ignore landmarks for straight-line orientation. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2013, 199, 17-23.	1.6	38
65	Are harbour seals (Phoca vitulina) able to perceive and use polarised light?. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2013, 199, 509-519.	1.6	7
66	Dung beetles use their dung ball as a mobile thermal refuge. Current Biology, 2012, 22, R863-R864.	3.9	28
67	A Unique Advantage for Giant Eyes in Giant Squid. Current Biology, 2012, 22, 683-688.	3.9	85
68	The Dung Beetle Dance: An Orientation Behaviour?. PLoS ONE, 2012, 7, e30211.	2.5	42
69	Nocturnal Homing: Learning Walks in a Wandering Spider?. PLoS ONE, 2012, 7, e49263.	2.5	18
70	Computational models for spatiotemporal filtering strategies in insect motion vision at low light levels. , $2011, \ldots$		4
71	Vision and Visual Navigation in Nocturnal Insects. Annual Review of Entomology, 2011, 56, 239-254.	11.8	169
72	Spectral sensitivity of a colour changing spider. Journal of Insect Physiology, 2011, 57, 508-513.	2.0	17

#	Article	IF	Citations
73	Nocturnal insects use optic flow for flight control. Biology Letters, 2011, 7, 499-501.	2.3	53
74	Ocellar adaptations for dim light vision in a nocturnal bee. Journal of Experimental Biology, 2011, 214, 1283-1293.	1.7	39
75	Hornets Can Fly at Night without Obvious Adaptations of Eyes and Ocelli. PLoS ONE, 2011, 6, e21892.	2.5	18
76	Bearing selection in ball-rolling dung beetles: is it constant?. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2010, 196, 801-806.	1.6	23
77	Polarisation Vision: Beetles See Circularly Polarised Light. Current Biology, 2010, 20, R610-R612.	3.9	21
78	Wide-field motion tuning in nocturnal hawkmoths. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 853-860.	2.6	53
79	Visual Orientation and Navigation in Nocturnal Arthropods. Brain, Behavior and Evolution, 2010, 75, 156-173.	1.7	39
80	Comparative visual function in four piscivorous fishes inhabiting Chesapeake Bay. Journal of Experimental Biology, 2010, 213, 1751-1761.	1.7	49
81	Resolution and sensitivity of the eyes of the Asian honeybees <i>Apis florea, Apis cerana</i> and <i>Apis dorsata</i> Journal of Experimental Biology, 2009, 212, 2448-2453.	1.7	46
82	Mammalian Vision: Rods Are a Bargain. Current Biology, 2009, 19, R69-R71.	3.9	4
83	Lens optical properties in the eyes of large marine predatory teleosts. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2009, 195, 175-182.	1.6	24
84	Visual ecology of Indian carpenter bees II: adaptations of eyes and ocelli to nocturnal and diurnal lifestyles. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2009, 195, 571-583.	1.6	87
85	Visual ecology of Indian carpenter bees I: Light intensities and flight activity. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2008, 194, 97-107.	1.6	66
86	Visual Reliability and Information Rate in the Retina of a Nocturnal Bee. Current Biology, 2008, 18, 349-353.	3.9	74
87	Comparative visual function in five sciaenid fishes inhabiting Chesapeake Bay. Journal of Experimental Biology, 2008, 211, 3601-3612.	1.7	53
88	The optical sensitivity of compound eyes: theory and experiment compared. Biology Letters, 2008, 4, 745-747.	2.3	16
89	Seeing in the dark: vision and visual behaviour in nocturnal bees and wasps. Journal of Experimental Biology, 2008, 211, 1737-1746.	1.7	118
90	Visual sensitivity in the crepuscular owl butterfly <i>Caligo memnon</i> and the diurnal blue morpho <i>Morpho peleides</i> : a clue to explain the evolution of nocturnal apposition eyes?. Journal of Experimental Biology, 2008, 211, 844-851.	1.7	40

#	Article	IF	Citations
91	Flight performance in night-flying sweat bees suffers at low light levels. Journal of Experimental Biology, 2007, 210, 4034-4042.	1.7	39
92	Visual Ecology: Hiding in the Dark. Current Biology, 2007, 17, R209-R211.	3.9	7
93	Nocturnal bees. Current Biology, 2007, 17, R991-R992.	3.9	10
94	Form vision in the insect dorsal ocelli: An anatomical and optical analysis of the dragonfly median ocellus. Vision Research, 2007, 47, 1394-1409.	1.4	36
95	Form vision in the insect dorsal ocelli: An anatomical and optical analysis of the Locust Ocelli. Vision Research, 2007, 47, 1382-1393.	1.4	29
96	Adaptive enhancement and noise reduction in very low light-level video., 2007,,.		75
97	Anatomical and physiological evidence for polarisation vision in the nocturnal bee Megalopta genalis. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2007, 193, 591-600.	1.6	38
98	Adaptations for vision in dim light: impulse responses and bumps in nocturnal spider photoreceptor cells (Cupiennius salei Keys). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2007, 193, 1081-1087.	1.6	24
99	Light intensity limits foraging activity in nocturnal and crepuscular bees. Behavioral Ecology, 2006, 17, 63-72.	2.2	135
100	Crepuscular and nocturnal illumination and its effects on color perception by the nocturnal hawkmoth <i>Deilephila elpenor</i> . Journal of Experimental Biology, 2006, 209, 789-800.	1.7	202
101	Celestial polarization patterns during twilight. Applied Optics, 2006, 45, 5582.	2.1	88
102	A`bright zone' in male hoverfly (Eristalis tenax) eyes and associated faster motion detection and increased contrast sensitivity. Journal of Experimental Biology, 2006, 209, 4339-4354.	1.7	122
103	Visual summation in night-flying sweat bees: A theoretical study. Vision Research, 2006, 46, 2298-2309.	1.4	68
104	Visual training improves underwater vision in children. Vision Research, 2006, 46, 3443-3450.	1.4	36
105	Ocellar optics in nocturnal and diurnal bees and wasps. Arthropod Structure and Development, 2006, 35, 293-305.	1.4	66
106	Warm Eyes Provide Superior Vision in Swordfishes. Current Biology, 2005, 15, 55-58.	3.9	172
107	A neural network to improve dim-light vision? Dendritic fields of first-order interneurons in the nocturnal bee Megalopta genalis. Cell and Tissue Research, 2005, 322, 313-320.	2.9	69
108	Lunar orientation in a beetle. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 361-365.	2.6	102

#	Article	IF	Citations
109	Nocturnal Vision and Landmark Orientation in a Tropical Halictid Bee. Current Biology, 2004, 14, 1309-1318.	3.9	189
110	Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis. Cell and Tissue Research, 2004, 316, 377-390.	2.9	144
111	Neural organisation in the first optic ganglion of the nocturnal bee Megalopta genalis. Cell and Tissue Research, 2004, 318, 429-437.	2.9	72
112	Vision in the dimmest habitats on Earth. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2004, 190, 765-789.	1.6	255
113	Vision in the deep sea. Biological Reviews, 2004, 79, 671-712.	10.4	334
114	Visual cues used by ball-rolling dung beetles for orientation. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2003, 189, 411-418.	1.6	75
115	Superior Underwater Vision in a Human Population of Sea Gypsies. Current Biology, 2003, 13, 833-836.	3.9	101
116	Insect orientation to polarized moonlight. Nature, 2003, 424, 33-33.	27.8	252
117	Retinal specializations in the blue marlin: eyes designed for sensitivity to low light levels. Marine and Freshwater Research, 2003, 54, 333.	1.3	79
118	Colour Vision in Diurnal and Nocturnal Hawkmoths. Integrative and Comparative Biology, 2003, 43, 571-579.	2.0	102
119	Visual field structure in the Empress Leilia, Asterocampa leilia (Lepidoptera, Nymphalidae): dimensions and regional variation in acuity. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2002, 188, 1-12.	1.6	32
120	Scotopic colour vision in nocturnal hawkmoths. Nature, 2002, 419, 922-925.	27.8	214
121	Visual discrimination: Seeing the third quality of light. Current Biology, 1999, 9, R535-R537.	3.9	50
122	Seeing better at night: life style, eye design and the optimum strategy of spatial and temporal summation. Vision Research, 1999, 39, 1611-1630.	1.4	305
123	Absorption of white light in photoreceptors. Vision Research, 1998, 38, 195-207.	1.4	185
124	Strategies for retinal design in arthropod eyes of low F-number. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1991, 168, 499-512.	1.6	53
125	Changes of Acuity during Light and Dark Adaptation in the Dragonfly Compound Eye. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1990, 45, 137-142.	1.4	5