

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1187350/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology, 2020, 296, E32-E40.	3.6	4,400
2	Cardiac Involvement in Patients Recovered From COVID-2019 Identified Using Magnetic Resonance Imaging. JACC: Cardiovascular Imaging, 2020, 13, 2330-2339.	2.3	440
3	Serial Quantitative Chest CT Assessment of COVID-19: A Deep Learning Approach. Radiology: Cardiothoracic Imaging, 2020, 2, e200075.	0.9	330
4	Deep Learning–based Method for Fully Automatic Quantification of Left Ventricle Function from Cine MR Images: A Multivendor, Multicenter Study. Radiology, 2019, 290, 81-88.	3.6	152
5	A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging. Medical Image Analysis, 2021, 67, 101832.	7.0	150
6	Whole human heart histology to validate electroanatomical voltage mapping in patients with non-ischaemic cardiomyopathy and ventricular tachycardia. European Heart Journal, 2018, 39, 2867-2875.	1.0	113
7	CMR–Based Identification of Critical Isthmus Sites of Ischemic and NonischemicÂVentricular Tachycardia. JACC: Cardiovascular Imaging, 2014, 7, 774-784.	2.3	97
8	Cardiovascular Magnetic Resonance for Patients With COVID-19. JACC: Cardiovascular Imaging, 2022, 15, 685-699.	2.3	79
9	Automated segmentation of myocardial scar in late enhancement MRI using combined intensity and spatial information. Magnetic Resonance in Medicine, 2010, 64, 586-594.	1.9	71
10	Targeting the Hidden Substrate Unmasked by Right Ventricular Extrastimulation Improves Ventricular Tachycardia Ablation Outcome After Myocardial Infarction. JACC: Clinical Electrophysiology, 2018, 4, 316-327.	1.3	42
11	Algorithms for left atrial wall segmentation and thickness – Evaluation on an open-source CT and MRI image database. Medical Image Analysis, 2018, 50, 36-53.	7.0	40
12	Entropy as a Novel Measure of Myocardial Tissue Heterogeneity for Prediction of Ventricular Arrhythmias and Mortality in Post-Infarct Patients. JACC: Clinical Electrophysiology, 2019, 5, 480-489.	1.3	40
13	Fully automatic segmentation of left atrium and pulmonary veins in late gadoliniumâ€enhanced MRI: Towards objective atrial scar assessment. Journal of Magnetic Resonance Imaging, 2016, 44, 346-354.	1.9	37
14	Left Ventricular Entropy Is a Novel Predictor of Arrhythmic Events in Patients With Dilated Cardiomyopathy Receiving Defibrillators for PrimaryÂPrevention. JACC: Cardiovascular Imaging, 2019, 12, 1177-1184.	2.3	37
15	Automated left ventricle segmentation in late gadolinium-enhanced MRI for objective myocardial scar assessment. Journal of Magnetic Resonance Imaging, 2015, 42, 390-399.	1.9	33
16	MRI native T1 and T2 mapping of myocardial segments in hypertrophic cardiomyopathy: tissue remodeling manifested prior to structure changes. British Journal of Radiology, 2019, 92, 20190634.	1.0	32
17	MRI Manufacturer Shift and Adaptation: Increasing the Generalizability of Deep Learning Segmentation for MR Images Acquired with Different Scanners. Radiology: Artificial Intelligence, 2020, 2, e190195.	3.0	30
18	Edge-Guided Output Adaptor: Highly Efficient Adaptation Module for Cross-Vendor Medical Image Segmentation. IEEE Signal Processing Letters, 2019, 26, 1593-1597.	2.1	27

Qian Tao

#	Article	IF	CITATIONS
19	Toward Magnetic Resonanceâ€Guided Electroanatomical Voltage Mapping for Catheter Ablation of Scarâ€Related Ventricular Tachycardia: A Comparison of Registration Methods. Journal of Cardiovascular Electrophysiology, 2012, 23, 74-80.	0.8	25
20	Fully-automatic left ventricular segmentation from long-axis cardiac cine MR scans. Medical Image Analysis, 2017, 39, 44-55.	7.0	23
21	Multisize Electrodes for SubstrateÂldentification in IschemicÂCardiomyopathy. JACC: Clinical Electrophysiology, 2019, 5, 1130-1140.	1.3	23
22	Dynamical anchoring of distant arrhythmia sources by fibrotic regions via restructuring of the activation pattern. PLoS Computational Biology, 2018, 14, e1006637.	1.5	22
23	High spatial resolution free-breathing 3D late gadolinium enhancement cardiac magnetic resonance imaging in ischaemic and non-ischaemic cardiomyopathy: quantitative assessment of scar mass and image quality. European Radiology, 2018, 28, 4027-4035.	2.3	21
24	Deep Learning for Quantitative Cardiac MRI. American Journal of Roentgenology, 2020, 214, 529-535.	1.0	20
25	Robust motion correction for myocardial T ₁ and extracellular volume mapping by principle component analysisâ€based groupwise image registration. Journal of Magnetic Resonance Imaging, 2018, 47, 1397-1405.	1.9	18
26	Renal sinus fat volume in type 2 diabetes mellitus is associated with glycated hemoglobin and metabolic risk factors. Journal of Diabetes and Its Complications, 2021, 35, 107973.	1.2	16
27	Super-resolution reconstruction of late gadolinium-enhanced MRI for improved myocardial scar assessment. Journal of Magnetic Resonance Imaging, 2015, 42, 160-167.	1.9	14
28	Cine MRI analysis by deep learning of optical flow: Adding the temporal dimension. Computers in Biology and Medicine, 2019, 111, 103356.	3.9	14
29	Preprocedural magnetic resonance imaging for image-guided catheter ablation of scar-related ventricular tachycardia. International Journal of Cardiovascular Imaging, 2015, 31, 369-377.	0.7	12
30	Mini-, Micro-, and Conventional Electrodes. JACC: Clinical Electrophysiology, 2021, 7, 197-205.	1.3	12
31	Temporally coherent cardiac motion tracking from cine MRI: Traditional registration method and modern CNN method. Medical Physics, 2020, 47, 4189-4198.	1.6	11
32	Fully Automated 3D Vestibular Schwannoma Segmentation with and without Gadolinium-based Contrast Material: A Multicenter, Multivendor Study. Radiology: Artificial Intelligence, 2022, 4, .	3.0	11
33	Association of cardiovascular magnetic resonance-derived circumferential strain parameters with the risk of ventricular arrhythmia and all-cause mortality in patients with prior myocardial infarction and primary prevention implantable cardioverter defibrillator. Journal of Cardiovascular Magnetic Resonance, 2019, 21, 28.	1.6	9
34	Novel artificial neural network and linear regression based equation for estimating visceral adipose tissue volume. Clinical Nutrition, 2020, 39, 3182-3188.	2.3	9
35	Late effects of pediatric hematopoietic stem cell transplantation on left ventricular function, aortic stiffness and myocardial tissue characteristics. Journal of Cardiovascular Magnetic Resonance, 2019, 21, 6.	1.6	7
36	Fully automated segmentation of the left atrium, pulmonary veins, and left atrial appendage from magnetic resonance angiography by jointâ€atlasâ€optimization. Medical Physics, 2019, 46, 2074-2084.	1.6	7

QIAN TAO

#	Article	IF	CITATIONS
37	RV Tissue Heterogeneity on CT. JACC: Clinical Electrophysiology, 2020, 6, 1073-1085.	1.3	6
38	Identification of cardiovascular abnormalities by multiparametric magnetic resonance imaging in end-stage renal disease patients with preserved left ventricular ejection fraction. European Radiology, 2021, 31, 7098-7109.	2.3	5
39	Model-based alignment of Look-Locker MRI sequences for calibrated myocardical scar tissue quantification. , 2013, , .		4
40	Multielectrode Unipolar Voltage Mapping and Electrogram Morphology to Identify Post-Infarct Scar Geometry. JACC: Clinical Electrophysiology, 2022, 8, 437-449.	1.3	4
41	A Multi-Scope Convolutional Neural Network for Automatic Left Ventricle Segmentation from Magnetic Resonance Images: Deep-Learning at Multiple Scopes. , 2018, , .		3
42	Pressure-flow curve derived from coronary CT angiography for detection of significant hemodynamic stenosis. European Radiology, 2020, 30, 4347-4355.	2.3	3
43	Deep Recursive Embedding for High-Dimensional Data. IEEE Transactions on Visualization and Computer Graphics, 2022, 28, 1237-1248.	2.9	3
44	Myocardial scar identification based on analysis of Look–Locker and 3D late gadolinium enhanced MRI. International Journal of Cardiovascular Imaging, 2014, 30, 925-34.	0.7	2
45	Improved Myocardial Scar Characterization by Super-Resolution Reconstruction in Late Gadolinium Enhanced MRI. Lecture Notes in Computer Science, 2013, 16, 147-154.	1.0	2
46	Predicting Atrial Fibrillation from Automated Measurements of Left Atrial Volume Using Routine Chest CT Examination: Overlooked and Underrecognized Risk Factors. Radiology: Cardiothoracic Imaging, 2019, 1, e190217.	0.9	1
47	The Challenge of Automated Analysis of Myocardial Perfusion MRI: Is It Ready for Prime Time?. Journal of Magnetic Resonance Imaging, 2020, 51, 1697-1698.	1.9	1
48	Combining magnetic resonance late gadolinium enhanced and Look-Locker sequences for myocardial scar characterization. , 2013, , .		0
49	Left ventricular thrombus after acute ST-segment elevation myocardial infarction: multi-parametric cardiac magnetic resonance imaging with long-term outcomes. International Journal of Cardiovascular Imaging, 0, , 1.	0.2	0