List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1187265/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	2D Ti-based metal–organic framework photocatalysis for red light-driven selective aerobic oxidation of sulfides. Chemical Engineering Journal, 2022, 430, 133071.	12.7	28
2	Extending aromatic acids on TiO2 for cooperative photocatalysis with triethylamine: Violet light-induced selective aerobic oxidation of sulfides. Chinese Chemical Letters, 2022, 33, 3733-3738.	9.0	21
3	Facile synthesis of 2D covalent organic frameworks for cooperative photocatalysis with TEMPO: The selective aerobic oxidation of benzyl amines. Applied Catalysis B: Environmental, 2022, 303, 120846.	20.2	63
4	Selective photocatalytic oxidation of sulfides with dioxygen over carbazole–fluorene conjugated microporous polymers. Journal of Colloid and Interface Science, 2022, 608, 882-892.	9.4	16
5	2D sp ² Carbonâ€Conjugated Covalent Organic Framework with Pyreneâ€Tethered TEMPO Intercalation for Photocatalytic Aerobic Oxidation of Sulfides into Sulfoxides. Solar Rrl, 2022, 6, 2100608.	5.8	13
6	Hydrazone-linked 2D porphyrinic covalent organic framework photocatalysis for visible light-driven aerobic oxidation of amines to imines. Journal of Colloid and Interface Science, 2022, 610, 446-454.	9.4	19
7	Embedding an organic dye into Ti-MCM-48 for direct photocatalytic selective aerobic oxidation of sulfides driven by green light. Chemical Engineering Journal, 2022, 432, 134285.	12.7	8
8	Olefin-linked covalent organic framework nanotubes based on triazine for selective oxidation of sulfides with O2 powered by blue light. Applied Catalysis B: Environmental, 2022, 305, 121027.	20.2	40
9	Visible light-initiated aerobic oxidation of amines to imines over TiO ₂ microspheres with TEMPO ⁺ PF ₆ ^{â^'} . Sustainable Energy and Fuels, 2022, 6, 894-902.	4.9	5
10	Blue light photocatalysis of carbazole-based conjugated microporous polymers: Aerobic hydroxylation of phenylboronic acids to phenols. Applied Catalysis B: Environmental, 2022, 309, 121210.	20.2	35
11	Triazine-based two dimensional porous materials for visible light-mediated oxidation of sulfides to sulfoxides with O2. Journal of Colloid and Interface Science, 2022, 616, 846-857.	9.4	15
12	Combining BrÃ,nsted base and photocatalysis into conjugated microporous polymers: Visible light-induced oxidation of thiols into disulfides with oxygen. Journal of Colloid and Interface Science, 2022, 622, 1045-1053.	9.4	8
13	An azine-linked 2D porphyrinic covalent organic framework for red light photocatalytic oxidative coupling of amines. Materials Today Chemistry, 2022, 25, 100953.	3.5	2
14	Extending the 2D conjugated microporous polymers linked by thiazolo[5,4- <i>d</i>]thiazole for green light-driven selective aerobic oxidation of amines. Journal of Materials Chemistry A, 2022, 10, 14965-14975.	10.3	15
15	Molecular design of dye-TiO2 assemblies for green light-induced photocatalytic selective aerobic oxidation of amines. Journal of Colloid and Interface Science, 2021, 581, 826-835.	9.4	17
16	Cooperative TiO2 photocatalysis with TEMPO and N-hydroxysuccinimide for blue light-driven selective aerobic oxidation of amines. Chemosphere, 2021, 262, 127873.	8.2	12
17	Designing fluorene-based conjugated microporous polymers for blue light-driven photocatalytic selective oxidation of amines with oxygen. Applied Catalysis B: Environmental, 2021, 285, 119796.	20.2	44
18	Two-dimensional crystalline covalent triazine frameworks <i>via</i> dual modulator control for efficient photocatalytic oxidation of sulfides. Journal of Materials Chemistry A, 2021, 9, 16405-16410.	10.3	29

#	Article	IF	CITATIONS
19	Ti-based metal–organic frameworks for visible light photocatalysis. , 2021, , 561-573.		0
20	Bridging green light photocatalysis over hierarchical Nb ₂ O ₅ for the selective aerobic oxidation of sulfides. Journal of Materials Chemistry A, 2021, 9, 2214-2222.	10.3	28
21	Extending the π-conjugated molecules on TiO2 for the selective photocatalytic aerobic oxidation of sulfides triggered by visible light. Sustainable Energy and Fuels, 2021, 5, 2127-2135.	4.9	9
22	Superoxide generated by blue light photocatalysis of g-C3N4/TiO2 for selective conversion of amines. Environmental Research, 2021, 195, 110851.	7.5	18
23	Cadmium sulfide/titanate hybrid green light photocatalysis for selective aerobic oxidative homocoupling of amines. Journal of Colloid and Interface Science, 2021, 590, 387-395.	9.4	21
24	Modulating the Stacking Model of Covalent Organic Framework Isomers with Different Generation Efficiencies of Reactive Oxygen Species. ACS Applied Materials & Interfaces, 2021, 13, 29471-29481.	8.0	43
25	Thiazolo[5,4‑d]thiazole linked conjugated microporous polymer photocatalysis for selective aerobic oxidation of amines. Journal of Colloid and Interface Science, 2021, 593, 380-389.	9.4	21
26	Cooperative Photocatalysis with 4â€Aminoâ€TEMPO for Selective Aerobic Oxidation of Amines over TiO ₂ Nanotubes. Chemistry - an Asian Journal, 2021, 16, 2659-2668.	3.3	5
27	Dye-TiO2/SiO2 assembly photocatalysis for blue light-initiated selective aerobic oxidation of organic sulfides. Chemical Engineering Journal, 2021, 423, 129419.	12.7	18
28	Cooperative photocatalysis of dye-TiO2 nanotubes with TEMPO+BF4â^ for selective aerobic oxidation of amines driven by green light. Applied Catalysis B: Environmental, 2021, 296, 120368.	20.2	21
29	Blue light-powered hydroxynaphthoic acid-titanium dioxide photocatalysis for the selective aerobic oxidation of amines. Journal of Colloid and Interface Science, 2021, 602, 534-543.	9.4	14
30	Anchoring dye onto 1D Nb2O5 in cooperation with TEMPO for the selective photocatalytic aerobic oxidation of amines. Chemical Engineering Journal, 2021, 426, 131418.	12.7	15
31	2D sp2 carbon-conjugated triazine covalent organic framework photocatalysis for blue light-induced selective oxidation of sulfides with O2. Applied Catalysis B: Environmental, 2021, 299, 120691.	20.2	48
32	Selective photocatalytic formation of sulfoxides by aerobic oxidation of sulfides over conjugated microporous polymers with thiazolo[5,4‑d]thiazole linkage. Applied Catalysis B: Environmental, 2021, 298, 120514.	20.2	36
33	A 2D porphyrin-based covalent organic framework with TEMPO for cooperative photocatalysis in selective aerobic oxidation of sulfides. Materials Chemistry Frontiers, 2021, 5, 2255-2260.	5.9	45
34	Polyimide-TiO2 hybrid photocatalysis: Visible light-promoted selective aerobic oxidation of amines. Chemical Engineering Journal, 2020, 379, 122399.	12.7	54
35	TEMPO visible light photocatalysis: The selective aerobic oxidation of thiols to disulfides. Chinese Chemical Letters, 2020, 31, 1520-1524.	9.0	50
36	Titanate nanotube confined merger of organic photocatalysis and TEMPO catalysis for highly selective aerobic oxidation of sulfides. Sustainable Energy and Fuels, 2020, 4, 1754-1763.	4.9	15

#	Article	IF	CITATIONS
37	Assembling polydopamine on TiO2 for visible light photocatalytic selective oxidation of sulfides with aerial O2. Chemical Engineering Journal, 2020, 392, 123632.	12.7	43
38	2D and 3D Porphyrinic Covalent Organic Frameworks: The Influence of Dimensionality on Functionality. Angewandte Chemie - International Edition, 2020, 59, 3624-3629.	13.8	227
39	2D and 3D Porphyrinic Covalent Organic Frameworks: The Influence of Dimensionality on Functionality. Angewandte Chemie, 2020, 132, 3653-3658.	2.0	45
40	Visible-light photocatalytic selective aerobic oxidation of thiols to disulfides on anatase TiO2. Chinese Journal of Catalysis, 2020, 41, 1468-1473.	14.0	42
41	2D sp ² Carbon onjugated Porphyrin Covalent Organic Framework for Cooperative Photocatalysis with TEMPO. Angewandte Chemie - International Edition, 2020, 59, 9088-9093.	13.8	212
42	2D sp 2 Carbonâ€Conjugated Porphyrin Covalent Organic Framework for Cooperative Photocatalysis with TEMPO. Angewandte Chemie, 2020, 132, 9173-9178.	2.0	17
43	Cooperative smart TiO2 photocatalysis and TEMPO catalysis: Visible light-mediated selective aerobic oxidation of amines. Journal of Chemical Physics, 2020, 152, 044705.	3.0	6
44	Selective aerobic oxidation of sulfides by cooperative polyimide-titanium dioxide photocatalysis and triethylamine catalysis. Journal of Colloid and Interface Science, 2020, 565, 614-622.	9.4	32
45	Anthraquinones as photoredox active ligands of TiO2 for selective aerobic oxidation of organic sulfides. Applied Catalysis B: Environmental, 2019, 259, 118038.	20.2	46
46	Phenol–TiO ₂ complex photocatalysis: visible light-driven selective oxidation of amines into imines in air. Sustainable Energy and Fuels, 2019, 3, 488-498.	4.9	45
47	Cooperative photocatalytic selective aerobic oxidation of alcohols on anatase TiO ₂ . Sustainable Energy and Fuels, 2019, 3, 1701-1712.	4.9	20
48	Designed Synthesis of a 2D Porphyrinâ€Based sp ² Carbon onjugated Covalent Organic Framework for Heterogeneous Photocatalysis. Angewandte Chemie - International Edition, 2019, 58, 6430-6434.	13.8	470
49	Designed Synthesis of a 2D Porphyrinâ€Based sp ² Carbonâ€Conjugated Covalent Organic Framework for Heterogeneous Photocatalysis. Angewandte Chemie, 2019, 131, 6496-6500.	2.0	67
50	Metal Sulfide Photocatalysis: Visible‣ightâ€Induced Organic Transformations. ChemCatChem, 2019, 11, 1378-1393.	3.7	115
51	N-hydroxyphthalimide-TiO2 complex visible light photocatalysis. Applied Catalysis B: Environmental, 2019, 246, 149-155.	20.2	71
52	Visible light photocatalytic aerobic oxidative synthesis of imines from alcohols and amines on dye-sensitized TiO2. Catalysis Today, 2019, 335, 128-135.	4.4	18
53	Salicylic acid complexed with TiO2 for visible light-driven selective oxidation of amines into imines with air. Applied Catalysis B: Environmental, 2019, 244, 758-766.	20.2	54
54	Integrating TEMPO and Its Analogues with Visible‣ight Photocatalysis. Chemistry - an Asian Journal, 2018, 13, 599-613.	3.3	52

#	Article	IF	CITATIONS
55	Visible light-induced selective oxidation of alcohols with air by dye-sensitized TiO2 photocatalysis. Applied Catalysis B: Environmental, 2018, 232, 260-267.	20.2	117
56	Visible light photocatalysis of dye-sensitized TiO2: The selective aerobic oxidation of amines to imines. Applied Catalysis B: Environmental, 2018, 224, 404-409.	20.2	136
57	Merging the catechol–TiO ₂ complex photocatalyst with TEMPO for selective aerobic oxidation of amines into imines. Catalysis Science and Technology, 2018, 8, 3910-3917.	4.1	38
58	Improving the Visible Light Photocatalytic Aerobic Oxidation of Sulfides into Sulfoxides on Dyeâ€Sensitized TiO ₂ . ChemCatChem, 2018, 10, 4545-4554.	3.7	45
59	Al ₂ O ₃ Surface Complexation for Photocatalytic Organic Transformations. Journal of the American Chemical Society, 2017, 139, 269-276.	13.7	64
60	Merging visible light photocatalysis of dye-sensitized TiO ₂ with TEMPO: the selective aerobic oxidation of alcohols. Catalysis Science and Technology, 2017, 7, 4955-4963.	4.1	57
61	Cooperative photoredox catalysis. Chemical Society Reviews, 2016, 45, 3026-3038.	38.1	350
62	Visibleâ€Lightâ€Induced Photoredox Catalysis of Dyeâ€Sensitized Titanium Dioxide: Selective Aerobic Oxidation of Organic Sulfides. Angewandte Chemie, 2016, 128, 4775-4778.	2.0	147
63	Visibleâ€Lightâ€Induced Photoredox Catalysis of Dyeâ€Sensitized Titanium Dioxide: Selective Aerobic Oxidation of Organic Sulfides. Angewandte Chemie - International Edition, 2016, 55, 4697-4700.	13.8	222
64	Oxygen-atom transfer in titanium dioxide photoredox catalysis for organic synthesis. Photochemistry, 2016, , 364-384.	0.2	1
65	Tertiary amine mediated aerobic oxidation of sulfides into sulfoxides by visible-light photoredox catalysis on TiO ₂ . Chemical Science, 2015, 6, 5000-5005.	7.4	89
66	Synergistic photocatalytic aerobic oxidation of sulfides and amines on TiO ₂ under visible-light irradiation. Chemical Science, 2015, 6, 1075-1082.	7.4	87
67	Aerobic Oxidation of Alcohols on Au Nanocatalyst: Insight to the Roles of the Ni–Al Layered Double Hydroxides Support. ChemCatChem, 2014, 6, 1737-1747.	3.7	37
68	Heterogeneous visible light photocatalysis for selective organic transformations. Chemical Society Reviews, 2014, 43, 473-486.	38.1	1,286
69	Selective Aerobic Oxidation Mediated by TiO ₂ Photocatalysis. Accounts of Chemical Research, 2014, 47, 355-363.	15.6	252
70	UV-Assisted Removal of Inactive Peroxide Species for Sustained Epoxidation of Cyclooctene on Anatase TiO2. Chemistry - A European Journal, 2014, 20, 6277-6282.	3.3	5
71	Selective aerobic oxidation of amines to imines by TiO2 photocatalysis in water. Chemical Communications, 2013, 49, 5034.	4.1	96
72	Visibleâ€Lightâ€Induced Selective Photocatalytic Aerobic Oxidation of Amines into Imines on TiO ₂ . Chemistry - A European Journal, 2012, 18, 2624-2631.	3.3	182

XIANJUN LANG

#	Article	IF	CITATIONS
73	Selective Formation of Imines by Aerobic Photocatalytic Oxidation of Amines on TiO ₂ . Angewandte Chemie - International Edition, 2011, 50, 3934-3937.	13.8	396
74	[αâ€PW ₁₂ O ₄₀] ^{3â^'} Immobilized on Ionic Liquid–Modified Polymer as a Heterogeneous Catalyst for Alcohol Oxidation with Hydrogen Peroxide. Synthetic Communications, 2008, 38, 1610-1616.	2.1	33
75	Crystallization and Preliminary X-Ray Diffraction Analysis of Three Mastoparans. Protein and Peptide Letters, 2006, 13, 629-631.	0.9	3