Inyoul Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11871345/publications.pdf

Version: 2024-02-01

623734 794594 1,723 21 14 19 h-index citations g-index papers 21 21 21 2565 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Recent Advances in RNA Therapy and Its Carriers to Treat the Single-Gene Neurological Disorders. Biomedicines, 2022, 10, 158.	3.2	11
2	Multiple early factors anticipate post-acute COVID-19 sequelae. Cell, 2022, 185, 881-895.e20.	28.9	605
3	Epigenetic biotypes of post-traumatic stress disorder in war-zone exposed veteran and active duty males. Molecular Psychiatry, 2021, 26, 4300-4314.	7.9	22
4	Multi-omic biomarker identification and validation for diagnosing warzone-related post-traumatic stress disorder. Molecular Psychiatry, 2020, 25, 3337-3349.	7.9	68
5	Chronic elevation of plasma vascular endothelial growth factor-A (VEGF-A) is associated with a history of blast exposure. Journal of the Neurological Sciences, 2020, 417, 117049.	0.6	9
6	Alterations in Plasma microRNA and Protein Levels in War Veterans with Chronic Mild Traumatic Brain Injury. Journal of Neurotrauma, 2020, 37, 1418-1430.	3.4	30
7	Core transcriptional regulatory circuits in prion diseases. Molecular Brain, 2020, 13, 10.	2.6	7
8	Distinct Profiles of Cell-Free MicroRNAs in Plasma of Veterans with Post-Traumatic Stress Disorder. Journal of Clinical Medicine, 2019, 8, 963.	2.4	16
9	Circulating miRNAs as Tumor Biomarkers. , 2019, , 191-206.		2
10	The Importance of Standardization on Analyzing Circulating RNA. Molecular Diagnosis and Therapy, 2017, 21, 259-268.	3.8	56
11	A Multimetric Evaluation of Stratified Random Sampling for Classification: A Case Study. IEEE Life Sciences Letters, 2016, 2, 43-46.	1.2	3
12	A Common Phenotype Polymorphism in Mammalian Brains Defined by Concomitant Production of Prolactin and Growth Hormone. PLoS ONE, 2016, 11, e0149410.	2.5	3
13	A Gain-of-Function Mutation in TRPV3 Causes Focal Palmoplantar Keratoderma in a Chinese Family. Journal of Investigative Dermatology, 2015, 135, 907-909.	0.7	30
14	Molecular evidence of stress-induced acute heart injury in a mouse model simulating posttraumatic stress disorder. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3188-3193.	7.1	45
15	Systems biology: unlocking the complexities of disease to enhance medicine. Future Medicinal Chemistry, 2014, 6, 1727-1729.	2.3	0
16	Issues and Prospects of microRNA-Based Biomarkers in Blood and Other Body Fluids. Molecules, 2014, 19, 6080-6105.	3.8	102
17	A Systems Approach to Rheumatoid Arthritis. PLoS ONE, 2012, 7, e51508.	2.5	26
18	Extracellular microRNA: A new source of biomarkers. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2011, 717, 85-90.	1.0	542

INYOUL LEE

#	Article	IF	CITATIONS
19	Principal network analysis: identification of subnetworks representing major dynamics using gene expression data. Bioinformatics, 2011, 27, 391-398.	4.1	48
20	Systems Biology and the Discovery of Diagnostic Biomarkers. Disease Markers, 2010, 28, 199-207.	1.3	54
21	Characterization of the Japanese pufferfish (Takifugu rubripes) T-cell receptor \hat{l}_{\pm} locus reveals a unique genomic organization. Immunogenetics, 2001, 53, 31-42.	2.4	44